Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-dfralfi | Structured version Visualization version GIF version |
Description: Restricted universal quantification (df-wl-ral 35315) allows allows a simplification, if we can assume all occurrences of 𝑥 in 𝐴 are bounded. (Contributed by Wolf Lammen, 26-May-2023.) |
Ref | Expression |
---|---|
wl-dralfi.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
wl-dfralfi | ⊢ (∀(𝑥 : 𝐴)𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-dralfi.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | wl-dfralf 35318 | . 2 ⊢ (Ⅎ𝑥𝐴 → (∀(𝑥 : 𝐴)𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀(𝑥 : 𝐴)𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1536 ∈ wcel 2111 Ⅎwnfc 2899 ∀wl-ral 35310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-nf 1786 df-clel 2830 df-nfc 2901 df-wl-ral 35315 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |