Proof of Theorem wl-dfralflem
Step | Hyp | Ref
| Expression |
1 | | alcom 2130 |
. 2
⊢
(∀𝑦∀𝑥(𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥∀𝑦(𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑))) |
2 | | bi2.04 389 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑)) ↔ (𝑥 = 𝑦 → (𝑦 ∈ 𝐴 → 𝜑))) |
3 | | equcom 2006 |
. . . . . . 7
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
4 | 3 | imbi1i 351 |
. . . . . 6
⊢ ((𝑥 = 𝑦 → (𝑦 ∈ 𝐴 → 𝜑)) ↔ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝜑))) |
5 | 2, 4 | bitri 276 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝜑))) |
6 | 5 | albii 1805 |
. . . 4
⊢
(∀𝑦(𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝜑))) |
7 | | eleq1w 2867 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
8 | 7 | imbi1d 343 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝑦 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜑))) |
9 | 8 | equsalvw 1991 |
. . . 4
⊢
(∀𝑦(𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → 𝜑)) |
10 | 6, 9 | bitri 276 |
. . 3
⊢
(∀𝑦(𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → 𝜑)) |
11 | 10 | albii 1805 |
. 2
⊢
(∀𝑥∀𝑦(𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
12 | 1, 11 | bitri 276 |
1
⊢
(∀𝑦∀𝑥(𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |