![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-dfralv | Structured version Visualization version GIF version |
Description: Alternate definition of restricted universal quantification (df-wl-ral ) when 𝑥 and 𝐴 are disjoint. (Contributed by Wolf Lammen, 23-May-2023.) |
Ref | Expression |
---|---|
wl-dfralv | ⊢ (∀(𝑥 : 𝐴)𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wl-ral 34314 | . 2 ⊢ (∀(𝑥 : 𝐴)𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | 19.21v 1899 | . . 3 ⊢ (∀𝑥(𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 ∈ 𝐴 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
3 | 2 | albii 1783 | . 2 ⊢ (∀𝑦∀𝑥(𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
4 | wl-dfralflem 34316 | . 2 ⊢ (∀𝑦∀𝑥(𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
5 | 1, 3, 4 | 3bitr2i 291 | 1 ⊢ (∀(𝑥 : 𝐴)𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1506 ∈ wcel 2051 ∀wl-ral 34309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-11 2094 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1744 df-clel 2839 df-wl-ral 34314 |
This theorem is referenced by: wl-rgen 34320 wl-dfrexv 34327 wl-dfrmov 34332 |
Copyright terms: Public domain | W3C validator |