![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-dfrexf | Structured version Visualization version GIF version |
Description: Restricted existential quantification (df-wl-rex 34287) allows a simplification, if we can assume all occurrences of 𝑥 in 𝐴 are bounded. (Contributed by Wolf Lammen, 25-May-2023.) |
Ref | Expression |
---|---|
wl-dfrexf | ⊢ (Ⅎ𝑥𝐴 → (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-dfralf 34280 | . . 3 ⊢ (Ⅎ𝑥𝐴 → (∀(𝑥 : 𝐴) ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑))) | |
2 | 1 | notbid 310 | . 2 ⊢ (Ⅎ𝑥𝐴 → (¬ ∀(𝑥 : 𝐴) ¬ 𝜑 ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑))) |
3 | df-wl-rex 34287 | . 2 ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ¬ ∀(𝑥 : 𝐴) ¬ 𝜑) | |
4 | exnalimn 1806 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
5 | 2, 3, 4 | 3bitr4g 306 | 1 ⊢ (Ⅎ𝑥𝐴 → (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1505 ∃wex 1742 ∈ wcel 2050 Ⅎwnfc 2916 ∀wl-ral 34272 ∃wl-rex 34273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-11 2093 ax-12 2106 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-nf 1747 df-clel 2846 df-nfc 2918 df-wl-ral 34277 df-wl-rex 34287 |
This theorem is referenced by: wl-dfrexfi 34289 wl-dfreuf 34300 |
Copyright terms: Public domain | W3C validator |