![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-dfrexsb | Structured version Visualization version GIF version |
Description: An alternate definition of restricted existential quantification (df-wl-rex 34287) using substitution. (Contributed by Wolf Lammen, 25-May-2023.) |
Ref | Expression |
---|---|
wl-dfrexsb | ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wl-rex 34287 | . . 3 ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ¬ ∀(𝑥 : 𝐴) ¬ 𝜑) | |
2 | wl-dfralsb 34278 | . . 3 ⊢ (∀(𝑥 : 𝐴) ¬ 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → [𝑦 / 𝑥] ¬ 𝜑)) | |
3 | 1, 2 | xchbinx 326 | . 2 ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ¬ ∀𝑦(𝑦 ∈ 𝐴 → [𝑦 / 𝑥] ¬ 𝜑)) |
4 | sbn 2214 | . . . . . 6 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
5 | 4 | imbi2i 328 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 → [𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑦 ∈ 𝐴 → ¬ [𝑦 / 𝑥]𝜑)) |
6 | 5 | albii 1782 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → [𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → ¬ [𝑦 / 𝑥]𝜑)) |
7 | imnang 1804 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ¬ [𝑦 / 𝑥]𝜑) ↔ ∀𝑦 ¬ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | |
8 | alnex 1744 | . . . 4 ⊢ (∀𝑦 ¬ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | |
9 | 6, 7, 8 | 3bitri 289 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → [𝑦 / 𝑥] ¬ 𝜑) ↔ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
10 | 9 | con2bii 350 | . 2 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ¬ ∀𝑦(𝑦 ∈ 𝐴 → [𝑦 / 𝑥] ¬ 𝜑)) |
11 | 3, 10 | bitr4i 270 | 1 ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1505 ∃wex 1742 [wsb 2015 ∈ wcel 2050 ∀wl-ral 34272 ∃wl-rex 34273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-10 2079 ax-12 2106 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-ex 1743 df-nf 1747 df-sb 2016 df-wl-ral 34277 df-wl-rex 34287 |
This theorem is referenced by: wl-dfreusb 34298 |
Copyright terms: Public domain | W3C validator |