Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-dfrexsb Structured version   Visualization version   GIF version

Theorem wl-dfrexsb 34292
Description: An alternate definition of restricted existential quantification (df-wl-rex 34287) using substitution. (Contributed by Wolf Lammen, 25-May-2023.)
Assertion
Ref Expression
wl-dfrexsb (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑦(𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem wl-dfrexsb
StepHypRef Expression
1 df-wl-rex 34287 . . 3 (∃(𝑥 : 𝐴)𝜑 ↔ ¬ ∀(𝑥 : 𝐴) ¬ 𝜑)
2 wl-dfralsb 34278 . . 3 (∀(𝑥 : 𝐴) ¬ 𝜑 ↔ ∀𝑦(𝑦𝐴 → [𝑦 / 𝑥] ¬ 𝜑))
31, 2xchbinx 326 . 2 (∃(𝑥 : 𝐴)𝜑 ↔ ¬ ∀𝑦(𝑦𝐴 → [𝑦 / 𝑥] ¬ 𝜑))
4 sbn 2214 . . . . . 6 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
54imbi2i 328 . . . . 5 ((𝑦𝐴 → [𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑦𝐴 → ¬ [𝑦 / 𝑥]𝜑))
65albii 1782 . . . 4 (∀𝑦(𝑦𝐴 → [𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑦(𝑦𝐴 → ¬ [𝑦 / 𝑥]𝜑))
7 imnang 1804 . . . 4 (∀𝑦(𝑦𝐴 → ¬ [𝑦 / 𝑥]𝜑) ↔ ∀𝑦 ¬ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
8 alnex 1744 . . . 4 (∀𝑦 ¬ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ¬ ∃𝑦(𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
96, 7, 83bitri 289 . . 3 (∀𝑦(𝑦𝐴 → [𝑦 / 𝑥] ¬ 𝜑) ↔ ¬ ∃𝑦(𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
109con2bii 350 . 2 (∃𝑦(𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ¬ ∀𝑦(𝑦𝐴 → [𝑦 / 𝑥] ¬ 𝜑))
113, 10bitr4i 270 1 (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑦(𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wal 1505  wex 1742  [wsb 2015  wcel 2050  wl-ral 34272  wl-rex 34273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-10 2079  ax-12 2106
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ex 1743  df-nf 1747  df-sb 2016  df-wl-ral 34277  df-wl-rex 34287
This theorem is referenced by:  wl-dfreusb  34298
  Copyright terms: Public domain W3C validator