Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-dfrmosb Structured version   Visualization version   GIF version

Theorem wl-dfrmosb 34855
Description: An alternate definition of restricted "at most one" (df-wl-rmo 34854) using substitution. (Contributed by Wolf Lammen, 27-May-2023.)
Assertion
Ref Expression
wl-dfrmosb (∃*(𝑥 : 𝐴)𝜑 ↔ ∃*𝑦(𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem wl-dfrmosb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 wl-dfralsb 34839 . . . 4 (∀(𝑥 : 𝐴)(𝜑𝑥 = 𝑧) ↔ ∀𝑦(𝑦𝐴 → [𝑦 / 𝑥](𝜑𝑥 = 𝑧)))
2 sbim 2311 . . . . . . . 8 ([𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝑥 = 𝑧))
3 equsb3 2109 . . . . . . . . 9 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
43imbi2i 338 . . . . . . . 8 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
52, 4bitri 277 . . . . . . 7 ([𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
65imbi2i 338 . . . . . 6 ((𝑦𝐴 → [𝑦 / 𝑥](𝜑𝑥 = 𝑧)) ↔ (𝑦𝐴 → ([𝑦 / 𝑥]𝜑𝑦 = 𝑧)))
7 impexp 453 . . . . . 6 (((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 = 𝑧) ↔ (𝑦𝐴 → ([𝑦 / 𝑥]𝜑𝑦 = 𝑧)))
86, 7bitr4i 280 . . . . 5 ((𝑦𝐴 → [𝑦 / 𝑥](𝜑𝑥 = 𝑧)) ↔ ((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 = 𝑧))
98albii 1820 . . . 4 (∀𝑦(𝑦𝐴 → [𝑦 / 𝑥](𝜑𝑥 = 𝑧)) ↔ ∀𝑦((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 = 𝑧))
101, 9bitri 277 . . 3 (∀(𝑥 : 𝐴)(𝜑𝑥 = 𝑧) ↔ ∀𝑦((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 = 𝑧))
1110exbii 1848 . 2 (∃𝑧∀(𝑥 : 𝐴)(𝜑𝑥 = 𝑧) ↔ ∃𝑧𝑦((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 = 𝑧))
12 df-wl-rmo 34854 . 2 (∃*(𝑥 : 𝐴)𝜑 ↔ ∃𝑧∀(𝑥 : 𝐴)(𝜑𝑥 = 𝑧))
13 df-mo 2622 . 2 (∃*𝑦(𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ∃𝑧𝑦((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 = 𝑧))
1411, 12, 133bitr4i 305 1 (∃*(𝑥 : 𝐴)𝜑 ↔ ∃*𝑦(𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535  wex 1780  [wsb 2069  wcel 2114  ∃*wmo 2620  wl-ral 34833  ∃*wl-rmo 34835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-12 2177
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-wl-ral 34838  df-wl-rmo 34854
This theorem is referenced by:  wl-dfreusb  34859
  Copyright terms: Public domain W3C validator