![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-dv-sb | Structured version Visualization version GIF version |
Description: Substitution for 𝑥 has no effect on 𝜑 not containing 𝑥. See also sbf 2497. (Contributed by Wolf Lammen, 4-Sep-2022.) |
Ref | Expression |
---|---|
wl-dv-sb | ⊢ (𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → 𝜑)) | |
2 | ax6e 2390 | . . . . . 6 ⊢ ∃𝑥 𝑥 = 𝑦 | |
3 | 2 | jctl 520 | . . . . 5 ⊢ (𝜑 → (∃𝑥 𝑥 = 𝑦 ∧ 𝜑)) |
4 | 19.41v 2045 | . . . . 5 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ (∃𝑥 𝑥 = 𝑦 ∧ 𝜑)) | |
5 | 3, 4 | sylibr 226 | . . . 4 ⊢ (𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
6 | 1, 5 | jca 508 | . . 3 ⊢ (𝜑 → ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
7 | df-sb 2065 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
8 | 6, 7 | sylibr 226 | . 2 ⊢ (𝜑 → [𝑦 / 𝑥]𝜑) |
9 | spsbe 2068 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) | |
10 | ax5e 2008 | . . 3 ⊢ (∃𝑥𝜑 → 𝜑) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜑) |
12 | 8, 11 | impbii 201 | 1 ⊢ (𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∃wex 1875 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-12 2213 ax-13 2377 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-sb 2065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |