Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-imim2i Structured version   Visualization version   GIF version

Theorem wl-imim2i 33590
Description: Inference adding common antecedents in an implication. Copy of imim2i 16 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wl-imim2i.1 (𝜑𝜓)
Assertion
Ref Expression
wl-imim2i ((𝜒𝜑) → (𝜒𝜓))

Proof of Theorem wl-imim2i
StepHypRef Expression
1 wl-imim2i.1 . 2 (𝜑𝜓)
2 ax-luk1 33578 . 2 ((𝜒𝜑) → ((𝜑𝜓) → (𝜒𝜓)))
31, 2wl-mpi 33589 1 ((𝜒𝜑) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 33578  ax-luk2 33579  ax-luk3 33580
This theorem is referenced by:  wl-syl6  33591  wl-ja  33598  wl-impchain-mp-1  33608  wl-impchain-mp-2  33609
  Copyright terms: Public domain W3C validator