Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nax6nfr Structured version   Visualization version   GIF version

Theorem wl-nax6nfr 33843
Description: All expressions are free of the variable used in the antecedent. (Contributed by Wolf Lammen, 12-Mar-2023.)
Assertion
Ref Expression
wl-nax6nfr (¬ ∃𝑥⊤ → Ⅎ𝑥𝜑)

Proof of Theorem wl-nax6nfr
StepHypRef Expression
1 wl-nax6al 33842 . 2 (¬ ∃𝑥⊤ → ∀𝑥𝜑)
2 nftht 1891 . 2 (∀𝑥𝜑 → Ⅎ𝑥𝜑)
31, 2syl 17 1 (¬ ∃𝑥⊤ → Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1654  wtru 1657  wex 1878  wnf 1882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908
This theorem depends on definitions:  df-bi 199  df-tru 1660  df-ex 1879  df-nf 1883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator