Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb6nae Structured version   Visualization version   GIF version

Theorem wl-sb6nae 33656
Description: Version of sb6 2286 suitable for elimination of unnecessary dv restrictions. (Contributed by Wolf Lammen, 28-Jul-2019.)
Assertion
Ref Expression
wl-sb6nae (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem wl-sb6nae
StepHypRef Expression
1 sb4b 2519 1 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wal 1635  [wsb 2061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-10 2186  ax-12 2215  ax-13 2422
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-ex 1860  df-nf 1864  df-sb 2062
This theorem is referenced by:  wl-2sb6d  33657
  Copyright terms: Public domain W3C validator