Step | Hyp | Ref
| Expression |
1 | | wlkresOLD.h |
. . 3
⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) |
2 | | wlkresOLD.d |
. . . . . . . 8
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
3 | | wlkresOLD.i |
. . . . . . . . 9
⊢ 𝐼 = (iEdg‘𝐺) |
4 | 3 | wlkf 26962 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
5 | | wrdfn 13614 |
. . . . . . . 8
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 Fn (0..^(♯‘𝐹))) |
6 | 2, 4, 5 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn (0..^(♯‘𝐹))) |
7 | | wlkresOLD.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
8 | | elfzouz2 12803 |
. . . . . . . 8
⊢ (𝑁 ∈
(0..^(♯‘𝐹))
→ (♯‘𝐹)
∈ (ℤ≥‘𝑁)) |
9 | | fzoss2 12815 |
. . . . . . . 8
⊢
((♯‘𝐹)
∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
11 | | fnssres 6250 |
. . . . . . 7
⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁)) |
12 | 6, 10, 11 | syl2anc 579 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁)) |
13 | | simpr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) |
14 | | fveqeq2 6455 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑥 → ((𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥) ↔ (𝐹‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))) |
15 | 14 | adantl 475 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) ∧ 𝑖 = 𝑥) → ((𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥) ↔ (𝐹‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))) |
16 | | fvres 6465 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑥) = (𝐹‘𝑥)) |
17 | 16 | adantl 475 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) = (𝐹‘𝑥)) |
18 | 17 | eqcomd 2783 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
19 | 13, 15, 18 | rspcedvd 3517 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ∃𝑖 ∈ (0..^𝑁)(𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
20 | 6 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝐹 Fn (0..^(♯‘𝐹))) |
21 | 10 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
22 | 20, 21 | fvelimabd 6514 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ (𝐹 “ (0..^𝑁)) ↔ ∃𝑖 ∈ (0..^𝑁)(𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥))) |
23 | 19, 22 | mpbird 249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ (𝐹 “ (0..^𝑁))) |
24 | 2, 4 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
25 | | wrdf 13604 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
26 | | ffvelrn 6621 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → (𝐹‘𝑥) ∈ dom 𝐼) |
27 | 26 | expcom 404 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈
(0..^(♯‘𝐹))
→ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹‘𝑥) ∈ dom 𝐼)) |
28 | 10 | sselda 3820 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^(♯‘𝐹))) |
29 | 27, 28 | syl11 33 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘𝑥) ∈ dom 𝐼)) |
30 | 29 | expd 406 |
. . . . . . . . . . . . . 14
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ dom 𝐼))) |
31 | 25, 30 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ Word dom 𝐼 → (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ dom 𝐼))) |
32 | 24, 31 | mpcom 38 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ dom 𝐼)) |
33 | 32 | imp 397 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘𝑥) ∈ dom 𝐼) |
34 | 17, 33 | eqeltrd 2858 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom 𝐼) |
35 | 23, 34 | elind 4020 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
36 | | dmres 5668 |
. . . . . . . . 9
⊢ dom
(𝐼 ↾ (𝐹 “ (0..^𝑁))) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) |
37 | 35, 36 | syl6eleqr 2869 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
38 | | wlkresOLD.e |
. . . . . . . . . . 11
⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
39 | 38 | dmeqd 5571 |
. . . . . . . . . 10
⊢ (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
40 | 39 | eleq2d 2844 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
41 | 40 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
42 | 37, 41 | mpbird 249 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆)) |
43 | 42 | ralrimiva 3147 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (0..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆)) |
44 | | ffnfv 6652 |
. . . . . 6
⊢ ((𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁) ∧ ∀𝑥 ∈ (0..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆))) |
45 | 12, 43, 44 | sylanbrc 578 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆)) |
46 | | fzossfz 12807 |
. . . . . . . . 9
⊢
(0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
47 | 46, 7 | sseldi 3818 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝐹))) |
48 | | wlkreslem0OLD 27016 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁) |
49 | 24, 47, 48 | syl2anc 579 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁) |
50 | 49 | oveq2d 6938 |
. . . . . 6
⊢ (𝜑 → (0..^(♯‘(𝐹 ↾ (0..^𝑁)))) = (0..^𝑁)) |
51 | 50 | feq2d 6277 |
. . . . 5
⊢ (𝜑 → ((𝐹 ↾ (0..^𝑁)):(0..^(♯‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆))) |
52 | 45, 51 | mpbird 249 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^(♯‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆)) |
53 | | iswrdb 13605 |
. . . 4
⊢ ((𝐹 ↾ (0..^𝑁)) ∈ Word dom (iEdg‘𝑆) ↔ (𝐹 ↾ (0..^𝑁)):(0..^(♯‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆)) |
54 | 52, 53 | sylibr 226 |
. . 3
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)) ∈ Word dom (iEdg‘𝑆)) |
55 | 1, 54 | syl5eqel 2862 |
. 2
⊢ (𝜑 → 𝐻 ∈ Word dom (iEdg‘𝑆)) |
56 | | wlkresOLD.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
57 | 56 | wlkp 26964 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
58 | 2, 57 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
59 | | wlkresOLD.s |
. . . . . . 7
⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
60 | 59 | feq3d 6278 |
. . . . . 6
⊢ (𝜑 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
61 | 58, 60 | mpbird 249 |
. . . . 5
⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆)) |
62 | | elfzuz3 12656 |
. . . . . 6
⊢ (𝑁 ∈
(0...(♯‘𝐹))
→ (♯‘𝐹)
∈ (ℤ≥‘𝑁)) |
63 | | fzss2 12698 |
. . . . . 6
⊢
((♯‘𝐹)
∈ (ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...(♯‘𝐹))) |
64 | 47, 62, 63 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ⊆ (0...(♯‘𝐹))) |
65 | 61, 64 | fssresd 6321 |
. . . 4
⊢ (𝜑 → (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆)) |
66 | 1 | fveq2i 6449 |
. . . . . . 7
⊢
(♯‘𝐻) =
(♯‘(𝐹 ↾
(0..^𝑁))) |
67 | 66, 49 | syl5eq 2825 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐻) = 𝑁) |
68 | 67 | oveq2d 6938 |
. . . . 5
⊢ (𝜑 → (0...(♯‘𝐻)) = (0...𝑁)) |
69 | 68 | feq2d 6277 |
. . . 4
⊢ (𝜑 → ((𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆))) |
70 | 65, 69 | mpbird 249 |
. . 3
⊢ (𝜑 → (𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆)) |
71 | | wlkresOLD.q |
. . . 4
⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
72 | 71 | feq1i 6282 |
. . 3
⊢ (𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆)) |
73 | 70, 72 | sylibr 226 |
. 2
⊢ (𝜑 → 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆)) |
74 | | wlkv 26960 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
75 | 56, 3 | iswlk 26958 |
. . . . . . . 8
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
76 | 75 | biimpd 221 |
. . . . . . 7
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
77 | 74, 76 | mpcom 38 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
78 | 2, 77 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
79 | 78 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
80 | 67 | oveq2d 6938 |
. . . . . . . . . . 11
⊢ (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁)) |
81 | 80 | eleq2d 2844 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) ↔ 𝑥 ∈ (0..^𝑁))) |
82 | 71 | fveq1i 6447 |
. . . . . . . . . . . . 13
⊢ (𝑄‘𝑥) = ((𝑃 ↾ (0...𝑁))‘𝑥) |
83 | | fzossfz 12807 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝑁) ⊆
(0...𝑁) |
84 | 83 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0..^𝑁) ⊆ (0...𝑁)) |
85 | 84 | sselda 3820 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0...𝑁)) |
86 | 85 | fvresd 6466 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘𝑥) = (𝑃‘𝑥)) |
87 | 82, 86 | syl5req 2826 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑃‘𝑥) = (𝑄‘𝑥)) |
88 | 71 | fveq1i 6447 |
. . . . . . . . . . . . 13
⊢ (𝑄‘(𝑥 + 1)) = ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) |
89 | | fzofzp1 12884 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0..^𝑁) → (𝑥 + 1) ∈ (0...𝑁)) |
90 | 89 | adantl 475 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (0...𝑁)) |
91 | 90 | fvresd 6466 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) = (𝑃‘(𝑥 + 1))) |
92 | 88, 91 | syl5req 2826 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) |
93 | 87, 92 | jca 507 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))) |
94 | 93 | ex 403 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))) |
95 | 81, 94 | sylbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))) |
96 | 95 | imp 397 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))) |
97 | 24 | ancli 544 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝜑 ∧ 𝐹 ∈ Word dom 𝐼)) |
98 | 25 | ffund 6295 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Word dom 𝐼 → Fun 𝐹) |
99 | 98 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) → Fun 𝐹) |
100 | 99 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → Fun 𝐹) |
101 | | fdm 6299 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) |
102 | | sseq2 3845 |
. . . . . . . . . . . . . . . . . . 19
⊢ (dom
𝐹 =
(0..^(♯‘𝐹))
→ ((0..^𝑁) ⊆ dom
𝐹 ↔ (0..^𝑁) ⊆
(0..^(♯‘𝐹)))) |
103 | 10, 102 | syl5ibr 238 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
𝐹 =
(0..^(♯‘𝐹))
→ (𝜑 → (0..^𝑁) ⊆ dom 𝐹)) |
104 | 25, 101, 103 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Word dom 𝐼 → (𝜑 → (0..^𝑁) ⊆ dom 𝐹)) |
105 | 104 | impcom 398 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) → (0..^𝑁) ⊆ dom 𝐹) |
106 | 105 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ dom 𝐹) |
107 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) |
108 | 100, 106,
107 | resfvresima 6767 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
109 | 97, 108 | sylan 575 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
110 | 109 | eqcomd 2783 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
111 | 110 | ex 403 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))) |
112 | 81, 111 | sylbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))) |
113 | 112 | imp 397 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
114 | 38 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
115 | 1 | fveq1i 6447 |
. . . . . . . . . . 11
⊢ (𝐻‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥) |
116 | 115 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (𝐻‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
117 | 114, 116 | fveq12d 6453 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → ((iEdg‘𝑆)‘(𝐻‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
118 | 113, 117 | eqtr4d 2816 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) |
119 | 96, 118 | jca 507 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
120 | 7, 8 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐹) ∈
(ℤ≥‘𝑁)) |
121 | 1 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻 = (𝐹 ↾ (0..^𝑁))) |
122 | 121 | fveq2d 6450 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝐻) = (♯‘(𝐹 ↾ (0..^𝑁)))) |
123 | 122, 49 | eqtrd 2813 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐻) = 𝑁) |
124 | 123 | fveq2d 6450 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘(♯‘𝐻)) = (ℤ≥‘𝑁)) |
125 | 120, 124 | eleqtrrd 2861 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐹) ∈
(ℤ≥‘(♯‘𝐻))) |
126 | | fzoss2 12815 |
. . . . . . . . . 10
⊢
((♯‘𝐹)
∈ (ℤ≥‘(♯‘𝐻)) → (0..^(♯‘𝐻)) ⊆
(0..^(♯‘𝐹))) |
127 | 125, 126 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (0..^(♯‘𝐻)) ⊆
(0..^(♯‘𝐹))) |
128 | 127 | sselda 3820 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → 𝑥 ∈ (0..^(♯‘𝐹))) |
129 | | wkslem1 26955 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
130 | 129 | rspcv 3506 |
. . . . . . . 8
⊢ (𝑥 ∈
(0..^(♯‘𝐹))
→ (∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
131 | 128, 130 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
132 | | eqeq12 2790 |
. . . . . . . . . 10
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → ((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄‘𝑥) = (𝑄‘(𝑥 + 1)))) |
133 | 132 | adantr 474 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄‘𝑥) = (𝑄‘(𝑥 + 1)))) |
134 | | simpr 479 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) |
135 | | sneq 4407 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑥) = (𝑄‘𝑥) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
136 | 135 | adantr 474 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
137 | 136 | adantr 474 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
138 | 134, 137 | eqeq12d 2792 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)} ↔ ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)})) |
139 | | preq12 4501 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))}) |
140 | 139 | adantr 474 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))}) |
141 | 140, 134 | sseq12d 3852 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥)) ↔ {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
142 | 133, 138,
141 | ifpbi123d 1061 |
. . . . . . . 8
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))) ↔ if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
143 | 142 | biimpd 221 |
. . . . . . 7
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
144 | 119, 131,
143 | sylsyld 61 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
145 | 144 | com12 32 |
. . . . 5
⊢
(∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
146 | 145 | 3ad2ant3 1126 |
. . . 4
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
147 | 79, 146 | mpcom 38 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
148 | 147 | ralrimiva 3147 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
149 | 56, 3, 2, 7, 59, 38, 1, 71 | wlkreslemOLD 27020 |
. . 3
⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
150 | | eqid 2777 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
151 | | eqid 2777 |
. . . 4
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
152 | 150, 151 | iswlk 26958 |
. . 3
⊢ ((𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V) → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))))) |
153 | 149, 152 | syl 17 |
. 2
⊢ (𝜑 → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))))) |
154 | 55, 73, 148, 153 | mpbir3and 1399 |
1
⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |