![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkreslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of wlkreslem 27035 as of 30-Nov-2022. (Contributed by AV, 5-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wlkresOLD.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkresOLD.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkresOLD.d | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkresOLD.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
wlkresOLD.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
wlkresOLD.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
wlkresOLD.h | ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) |
wlkresOLD.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
Ref | Expression |
---|---|
wlkreslemOLD | ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ (𝑆 ∈ V → (𝜑 → 𝑆 ∈ V)) | |
2 | df-nel 3076 | . . . 4 ⊢ (𝑆 ∉ V ↔ ¬ 𝑆 ∈ V) | |
3 | wlkresOLD.d | . . . . . 6 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
4 | df-br 4889 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (Walks‘𝐺)) | |
5 | ne0i 4149 | . . . . . . . 8 ⊢ (〈𝐹, 𝑃〉 ∈ (Walks‘𝐺) → (Walks‘𝐺) ≠ ∅) | |
6 | wlkresOLD.s | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
7 | wlkresOLD.v | . . . . . . . . . . . . . 14 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 6, 7 | syl6eq 2830 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (Vtx‘𝑆) = (Vtx‘𝐺)) |
9 | 8 | anim1i 608 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑆 ∉ V) → ((Vtx‘𝑆) = (Vtx‘𝐺) ∧ 𝑆 ∉ V)) |
10 | 9 | ancomd 455 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑆 ∉ V) → (𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺))) |
11 | wlk0prc 27018 | . . . . . . . . . . 11 ⊢ ((𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)) → (Walks‘𝐺) = ∅) | |
12 | eqneqall 2980 | . . . . . . . . . . 11 ⊢ ((Walks‘𝐺) = ∅ → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V)) | |
13 | 10, 11, 12 | 3syl 18 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑆 ∉ V) → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V)) |
14 | 13 | expcom 404 | . . . . . . . . 9 ⊢ (𝑆 ∉ V → (𝜑 → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V))) |
15 | 14 | com13 88 | . . . . . . . 8 ⊢ ((Walks‘𝐺) ≠ ∅ → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V))) |
16 | 5, 15 | syl 17 | . . . . . . 7 ⊢ (〈𝐹, 𝑃〉 ∈ (Walks‘𝐺) → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V))) |
17 | 4, 16 | sylbi 209 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V))) |
18 | 3, 17 | mpcom 38 | . . . . 5 ⊢ (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V)) |
19 | 18 | com12 32 | . . . 4 ⊢ (𝑆 ∉ V → (𝜑 → 𝑆 ∈ V)) |
20 | 2, 19 | sylbir 227 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝜑 → 𝑆 ∈ V)) |
21 | 1, 20 | pm2.61i 177 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
22 | wlkresOLD.h | . . 3 ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) | |
23 | wlkresOLD.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
24 | 23 | wlkf 26979 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
25 | wrdf 13610 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
26 | 25 | ffund 6297 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → Fun 𝐹) |
27 | 3, 24, 26 | 3syl 18 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
28 | ovex 6956 | . . . 4 ⊢ (0..^𝑁) ∈ V | |
29 | resfunexg 6753 | . . . 4 ⊢ ((Fun 𝐹 ∧ (0..^𝑁) ∈ V) → (𝐹 ↾ (0..^𝑁)) ∈ V) | |
30 | 27, 28, 29 | sylancl 580 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)) ∈ V) |
31 | 22, 30 | syl5eqel 2863 | . 2 ⊢ (𝜑 → 𝐻 ∈ V) |
32 | wlkresOLD.q | . . 3 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
33 | 7 | wlkp 26981 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
34 | ffun 6296 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → Fun 𝑃) | |
35 | 3, 33, 34 | 3syl 18 | . . . 4 ⊢ (𝜑 → Fun 𝑃) |
36 | ovex 6956 | . . . 4 ⊢ (0...𝑁) ∈ V | |
37 | resfunexg 6753 | . . . 4 ⊢ ((Fun 𝑃 ∧ (0...𝑁) ∈ V) → (𝑃 ↾ (0...𝑁)) ∈ V) | |
38 | 35, 36, 37 | sylancl 580 | . . 3 ⊢ (𝜑 → (𝑃 ↾ (0...𝑁)) ∈ V) |
39 | 32, 38 | syl5eqel 2863 | . 2 ⊢ (𝜑 → 𝑄 ∈ V) |
40 | 21, 31, 39 | 3jca 1119 | 1 ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∉ wnel 3075 Vcvv 3398 ∅c0 4141 〈cop 4404 class class class wbr 4888 dom cdm 5357 ↾ cres 5359 “ cima 5360 Fun wfun 6131 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 0cc0 10274 ...cfz 12648 ..^cfzo 12789 ♯chash 13441 Word cword 13605 Vtxcvtx 26361 iEdgciedg 26362 Walkscwlks 26961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ifp 1047 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-n0 11648 df-z 11734 df-uz 11998 df-fz 12649 df-fzo 12790 df-hash 13442 df-word 13606 df-wlks 26964 |
This theorem is referenced by: wlkresOLD 27038 |
Copyright terms: Public domain | W3C validator |