![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkwwlkbij2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of wlksnwwlknvbij 27230 as of 2-Aug-2022. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 16-Apr-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wlkwwlkbij2OLD | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ∃𝑓 𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6446 | . . 3 ⊢ (Walks‘𝐺) ∈ V | |
2 | 1 | mptrabex 6744 | . 2 ⊢ (𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)) ∈ V |
3 | fveq2 6433 | . . . . . . 7 ⊢ (𝑝 = 𝑢 → (1st ‘𝑝) = (1st ‘𝑢)) | |
4 | 3 | fveq2d 6437 | . . . . . 6 ⊢ (𝑝 = 𝑢 → (♯‘(1st ‘𝑝)) = (♯‘(1st ‘𝑢))) |
5 | 4 | eqeq1d 2827 | . . . . 5 ⊢ (𝑝 = 𝑢 → ((♯‘(1st ‘𝑝)) = 𝑁 ↔ (♯‘(1st ‘𝑢)) = 𝑁)) |
6 | fveq2 6433 | . . . . . . 7 ⊢ (𝑝 = 𝑢 → (2nd ‘𝑝) = (2nd ‘𝑢)) | |
7 | 6 | fveq1d 6435 | . . . . . 6 ⊢ (𝑝 = 𝑢 → ((2nd ‘𝑝)‘0) = ((2nd ‘𝑢)‘0)) |
8 | 7 | eqeq1d 2827 | . . . . 5 ⊢ (𝑝 = 𝑢 → (((2nd ‘𝑝)‘0) = 𝑃 ↔ ((2nd ‘𝑢)‘0) = 𝑃)) |
9 | 5, 8 | anbi12d 626 | . . . 4 ⊢ (𝑝 = 𝑢 → (((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃) ↔ ((♯‘(1st ‘𝑢)) = 𝑁 ∧ ((2nd ‘𝑢)‘0) = 𝑃))) |
10 | 9 | cbvrabv 3412 | . . 3 ⊢ {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)} = {𝑢 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑢)) = 𝑁 ∧ ((2nd ‘𝑢)‘0) = 𝑃)} |
11 | fveq1 6432 | . . . . 5 ⊢ (𝑤 = 𝑠 → (𝑤‘0) = (𝑠‘0)) | |
12 | 11 | eqeq1d 2827 | . . . 4 ⊢ (𝑤 = 𝑠 → ((𝑤‘0) = 𝑃 ↔ (𝑠‘0) = 𝑃)) |
13 | 12 | cbvrabv 3412 | . . 3 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑠 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑠‘0) = 𝑃} |
14 | fveq2 6433 | . . . . . . . 8 ⊢ (𝑡 = 𝑝 → (1st ‘𝑡) = (1st ‘𝑝)) | |
15 | 14 | fveq2d 6437 | . . . . . . 7 ⊢ (𝑡 = 𝑝 → (♯‘(1st ‘𝑡)) = (♯‘(1st ‘𝑝))) |
16 | 15 | eqeq1d 2827 | . . . . . 6 ⊢ (𝑡 = 𝑝 → ((♯‘(1st ‘𝑡)) = 𝑁 ↔ (♯‘(1st ‘𝑝)) = 𝑁)) |
17 | fveq2 6433 | . . . . . . . 8 ⊢ (𝑡 = 𝑝 → (2nd ‘𝑡) = (2nd ‘𝑝)) | |
18 | 17 | fveq1d 6435 | . . . . . . 7 ⊢ (𝑡 = 𝑝 → ((2nd ‘𝑡)‘0) = ((2nd ‘𝑝)‘0)) |
19 | 18 | eqeq1d 2827 | . . . . . 6 ⊢ (𝑡 = 𝑝 → (((2nd ‘𝑡)‘0) = 𝑃 ↔ ((2nd ‘𝑝)‘0) = 𝑃)) |
20 | 16, 19 | anbi12d 626 | . . . . 5 ⊢ (𝑡 = 𝑝 → (((♯‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃) ↔ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃))) |
21 | 20 | cbvrabv 3412 | . . . 4 ⊢ {𝑡 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} = {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)} |
22 | 21 | mpteq1i 4962 | . . 3 ⊢ (𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)) = (𝑥 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)} ↦ (2nd ‘𝑥)) |
23 | 10, 13, 22 | wlkwwlkbijOLD 27199 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)):{𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) |
24 | f1oeq1 6367 | . . 3 ⊢ (𝑓 = (𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)) → (𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ↔ (𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)):{𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) | |
25 | 24 | spcegv 3511 | . 2 ⊢ ((𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)) ∈ V → ((𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)):{𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → ∃𝑓 𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
26 | 2, 23, 25 | mpsyl 68 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ∃𝑓 𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∃wex 1880 ∈ wcel 2166 {crab 3121 Vcvv 3414 ↦ cmpt 4952 –1-1-onto→wf1o 6122 ‘cfv 6123 (class class class)co 6905 1st c1st 7426 2nd c2nd 7427 0cc0 10252 ℕ0cn0 11618 ♯chash 13410 USPGraphcuspgr 26447 Walkscwlks 26894 WWalksN cwwlksn 27125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ifp 1092 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-pm 8125 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-n0 11619 df-xnn0 11691 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-hash 13411 df-word 13575 df-edg 26346 df-uhgr 26356 df-upgr 26380 df-uspgr 26449 df-wlks 26897 df-wwlks 27129 df-wwlksn 27130 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |