Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkwwlksurOLD Structured version   Visualization version   GIF version

Theorem wlkwwlksurOLD 27156
 Description: Obsolete as of 2-Aug-2022. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 16-Apr-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
wlkwwlkbijOLD.t 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}
wlkwwlkbijOLD.w 𝑊 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
wlkwwlkbijOLD.f 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
Assertion
Ref Expression
wlkwwlksurOLD ((𝐺 ∈ USPGraph ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇onto𝑊)
Distinct variable groups:   𝐺,𝑝,𝑡,𝑤   𝑁,𝑝,𝑡,𝑤   𝑃,𝑝,𝑡,𝑤   𝑡,𝑇,𝑤   𝑡,𝑉   𝑡,𝑊   𝑤,𝐹   𝑤,𝑉   𝐹,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hints:   𝐹(𝑡)   𝑉(𝑝)   𝑊(𝑤)

Proof of Theorem wlkwwlksurOLD
Dummy variables 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 26412 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
2 wlkwwlkbijOLD.t . . . 4 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}
3 wlkwwlkbijOLD.w . . . 4 𝑊 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
4 wlkwwlkbijOLD.f . . . 4 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
52, 3, 4wlkwwlkfunOLD 27154 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇𝑊)
61, 5syl3an1 1203 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇𝑊)
7 fveq1 6410 . . . . . . 7 (𝑤 = 𝑝 → (𝑤‘0) = (𝑝‘0))
87eqeq1d 2801 . . . . . 6 (𝑤 = 𝑝 → ((𝑤‘0) = 𝑃 ↔ (𝑝‘0) = 𝑃))
98, 3elrab2 3560 . . . . 5 (𝑝𝑊 ↔ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃))
10 wlklnwwlkn 27142 . . . . . . . . . . 11 (𝐺 ∈ USPGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) ↔ 𝑝 ∈ (𝑁 WWalksN 𝐺)))
11 df-br 4844 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑝 ↔ ⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺))
12 vex 3388 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
13 vex 3388 . . . . . . . . . . . . . . . . 17 𝑝 ∈ V
1412, 13op1st 7409 . . . . . . . . . . . . . . . 16 (1st ‘⟨𝑓, 𝑝⟩) = 𝑓
1514eqcomi 2808 . . . . . . . . . . . . . . 15 𝑓 = (1st ‘⟨𝑓, 𝑝⟩)
1615fveq2i 6414 . . . . . . . . . . . . . 14 (♯‘𝑓) = (♯‘(1st ‘⟨𝑓, 𝑝⟩))
1716eqeq1i 2804 . . . . . . . . . . . . 13 ((♯‘𝑓) = 𝑁 ↔ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁)
1812, 13op2nd 7410 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨𝑓, 𝑝⟩) = 𝑝
1918eqcomi 2808 . . . . . . . . . . . . . . . 16 𝑝 = (2nd ‘⟨𝑓, 𝑝⟩)
2019fveq1i 6412 . . . . . . . . . . . . . . 15 (𝑝‘0) = ((2nd ‘⟨𝑓, 𝑝⟩)‘0)
2120eqeq1i 2804 . . . . . . . . . . . . . 14 ((𝑝‘0) = 𝑃 ↔ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃)
22 opex 5123 . . . . . . . . . . . . . . . 16 𝑓, 𝑝⟩ ∈ V
2322a1i 11 . . . . . . . . . . . . . . 15 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → ⟨𝑓, 𝑝⟩ ∈ V)
24 simpll 784 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃) → ⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺))
25 simpr 478 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁)
2625anim1i 609 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃) → ((♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃))
2719a1i 11 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃) → 𝑝 = (2nd ‘⟨𝑓, 𝑝⟩))
2824, 26, 27jca31 511 . . . . . . . . . . . . . . . . 17 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃) → ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ ((♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃)) ∧ 𝑝 = (2nd ‘⟨𝑓, 𝑝⟩)))
29 eleq1 2866 . . . . . . . . . . . . . . . . . . 19 (𝑢 = ⟨𝑓, 𝑝⟩ → (𝑢 ∈ (Walks‘𝐺) ↔ ⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺)))
30 fveq2 6411 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = ⟨𝑓, 𝑝⟩ → (1st𝑢) = (1st ‘⟨𝑓, 𝑝⟩))
3130fveq2d 6415 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = ⟨𝑓, 𝑝⟩ → (♯‘(1st𝑢)) = (♯‘(1st ‘⟨𝑓, 𝑝⟩)))
3231eqeq1d 2801 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = ⟨𝑓, 𝑝⟩ → ((♯‘(1st𝑢)) = 𝑁 ↔ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁))
33 fveq2 6411 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = ⟨𝑓, 𝑝⟩ → (2nd𝑢) = (2nd ‘⟨𝑓, 𝑝⟩))
3433fveq1d 6413 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = ⟨𝑓, 𝑝⟩ → ((2nd𝑢)‘0) = ((2nd ‘⟨𝑓, 𝑝⟩)‘0))
3534eqeq1d 2801 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = ⟨𝑓, 𝑝⟩ → (((2nd𝑢)‘0) = 𝑃 ↔ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃))
3632, 35anbi12d 625 . . . . . . . . . . . . . . . . . . 19 (𝑢 = ⟨𝑓, 𝑝⟩ → (((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃) ↔ ((♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃)))
3729, 36anbi12d 625 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑓, 𝑝⟩ → ((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ↔ (⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ ((♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃))))
3833eqeq2d 2809 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑓, 𝑝⟩ → (𝑝 = (2nd𝑢) ↔ 𝑝 = (2nd ‘⟨𝑓, 𝑝⟩)))
3937, 38anbi12d 625 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑓, 𝑝⟩ → (((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢)) ↔ ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ ((♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃)) ∧ 𝑝 = (2nd ‘⟨𝑓, 𝑝⟩))))
4028, 39syl5ibrcom 239 . . . . . . . . . . . . . . . 16 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ ((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃) → (𝑢 = ⟨𝑓, 𝑝⟩ → ((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4140impancom 444 . . . . . . . . . . . . . . 15 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) → (((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃 → ((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4223, 41spcimedv 3480 . . . . . . . . . . . . . 14 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → (((2nd ‘⟨𝑓, 𝑝⟩)‘0) = 𝑃 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4321, 42syl5bi 234 . . . . . . . . . . . . 13 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → ((𝑝‘0) = 𝑃 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4411, 17, 43syl2anb 592 . . . . . . . . . . . 12 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) → ((𝑝‘0) = 𝑃 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4544exlimiv 2026 . . . . . . . . . . 11 (∃𝑓(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) → ((𝑝‘0) = 𝑃 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢))))
4610, 45syl6bir 246 . . . . . . . . . 10 (𝐺 ∈ USPGraph → (𝑝 ∈ (𝑁 WWalksN 𝐺) → ((𝑝‘0) = 𝑃 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢)))))
4746imp32 410 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃)) → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢)))
48 fveq2 6411 . . . . . . . . . . . . . . 15 (𝑝 = 𝑢 → (1st𝑝) = (1st𝑢))
4948fveq2d 6415 . . . . . . . . . . . . . 14 (𝑝 = 𝑢 → (♯‘(1st𝑝)) = (♯‘(1st𝑢)))
5049eqeq1d 2801 . . . . . . . . . . . . 13 (𝑝 = 𝑢 → ((♯‘(1st𝑝)) = 𝑁 ↔ (♯‘(1st𝑢)) = 𝑁))
51 fveq2 6411 . . . . . . . . . . . . . . 15 (𝑝 = 𝑢 → (2nd𝑝) = (2nd𝑢))
5251fveq1d 6413 . . . . . . . . . . . . . 14 (𝑝 = 𝑢 → ((2nd𝑝)‘0) = ((2nd𝑢)‘0))
5352eqeq1d 2801 . . . . . . . . . . . . 13 (𝑝 = 𝑢 → (((2nd𝑝)‘0) = 𝑃 ↔ ((2nd𝑢)‘0) = 𝑃))
5450, 53anbi12d 625 . . . . . . . . . . . 12 (𝑝 = 𝑢 → (((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃) ↔ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)))
5554elrab 3556 . . . . . . . . . . 11 (𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)} ↔ (𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)))
5655anbi1i 618 . . . . . . . . . 10 ((𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)} ∧ 𝑝 = (2nd𝑢)) ↔ ((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢)))
5756exbii 1944 . . . . . . . . 9 (∃𝑢(𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)} ∧ 𝑝 = (2nd𝑢)) ↔ ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ ((♯‘(1st𝑢)) = 𝑁 ∧ ((2nd𝑢)‘0) = 𝑃)) ∧ 𝑝 = (2nd𝑢)))
5847, 57sylibr 226 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃)) → ∃𝑢(𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)} ∧ 𝑝 = (2nd𝑢)))
59 df-rex 3095 . . . . . . . 8 (∃𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}𝑝 = (2nd𝑢) ↔ ∃𝑢(𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)} ∧ 𝑝 = (2nd𝑢)))
6058, 59sylibr 226 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃)) → ∃𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}𝑝 = (2nd𝑢))
612rexeqi 3326 . . . . . . 7 (∃𝑢𝑇 𝑝 = (2nd𝑢) ↔ ∃𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}𝑝 = (2nd𝑢))
6260, 61sylibr 226 . . . . . 6 ((𝐺 ∈ USPGraph ∧ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃)) → ∃𝑢𝑇 𝑝 = (2nd𝑢))
63 fveq2 6411 . . . . . . . . 9 (𝑡 = 𝑢 → (2nd𝑡) = (2nd𝑢))
64 fvex 6424 . . . . . . . . 9 (2nd𝑢) ∈ V
6563, 4, 64fvmpt 6507 . . . . . . . 8 (𝑢𝑇 → (𝐹𝑢) = (2nd𝑢))
6665eqeq2d 2809 . . . . . . 7 (𝑢𝑇 → (𝑝 = (𝐹𝑢) ↔ 𝑝 = (2nd𝑢)))
6766rexbiia 3221 . . . . . 6 (∃𝑢𝑇 𝑝 = (𝐹𝑢) ↔ ∃𝑢𝑇 𝑝 = (2nd𝑢))
6862, 67sylibr 226 . . . . 5 ((𝐺 ∈ USPGraph ∧ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑃)) → ∃𝑢𝑇 𝑝 = (𝐹𝑢))
699, 68sylan2b 588 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑝𝑊) → ∃𝑢𝑇 𝑝 = (𝐹𝑢))
7069ralrimiva 3147 . . 3 (𝐺 ∈ USPGraph → ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢))
71703ad2ant1 1164 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉𝑁 ∈ ℕ0) → ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢))
72 dffo3 6600 . 2 (𝐹:𝑇onto𝑊 ↔ (𝐹:𝑇𝑊 ∧ ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢)))
736, 71, 72sylanbrc 579 1 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇onto𝑊)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 385   ∧ w3a 1108   = wceq 1653  ∃wex 1875   ∈ wcel 2157  ∀wral 3089  ∃wrex 3090  {crab 3093  Vcvv 3385  ⟨cop 4374   class class class wbr 4843   ↦ cmpt 4922  ⟶wf 6097  –onto→wfo 6099  ‘cfv 6101  (class class class)co 6878  1st c1st 7399  2nd c2nd 7400  0cc0 10224  ℕ0cn0 11580  ♯chash 13370  UPGraphcupgr 26315  USPGraphcuspgr 26384  Walkscwlks 26846   WWalksN cwwlksn 27077 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-ifp 1087  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-xnn0 11653  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-hash 13371  df-word 13535  df-edg 26283  df-uhgr 26293  df-upgr 26317  df-uspgr 26386  df-wlks 26849  df-wwlks 27081  df-wwlksn 27082 This theorem is referenced by:  wlkwwlkbijOLD  27157
 Copyright terms: Public domain W3C validator