![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdeqs1catOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of wrdeqs1cat 13809 as of 12-Oct-2022. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 9-May-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
wrdeqs1catOLD | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊 = (〈“(𝑊‘0)”〉 ++ (𝑊 substr 〈1, (♯‘𝑊)〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word 𝐴) | |
2 | 1nn0 11636 | . . . 4 ⊢ 1 ∈ ℕ0 | |
3 | 0elfz 12731 | . . . 4 ⊢ (1 ∈ ℕ0 → 0 ∈ (0...1)) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 0 ∈ (0...1)) |
5 | wrdfin 13592 | . . . 4 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊 ∈ Fin) | |
6 | 1elfz0hash 13469 | . . . 4 ⊢ ((𝑊 ∈ Fin ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊))) | |
7 | 5, 6 | sylan 577 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊))) |
8 | lennncl 13594 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
9 | 8 | nnnn0d 11678 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ0) |
10 | eluzfz2 12642 | . . . . 5 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘0) → (♯‘𝑊) ∈ (0...(♯‘𝑊))) | |
11 | nn0uz 12004 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
12 | 10, 11 | eleq2s 2924 | . . . 4 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊))) |
13 | 9, 12 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ (0...(♯‘𝑊))) |
14 | ccatswrd 13746 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ (0 ∈ (0...1) ∧ 1 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊)))) → ((𝑊 substr 〈0, 1〉) ++ (𝑊 substr 〈1, (♯‘𝑊)〉)) = (𝑊 substr 〈0, (♯‘𝑊)〉)) | |
15 | 1, 4, 7, 13, 14 | syl13anc 1497 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → ((𝑊 substr 〈0, 1〉) ++ (𝑊 substr 〈1, (♯‘𝑊)〉)) = (𝑊 substr 〈0, (♯‘𝑊)〉)) |
16 | 0p1e1 11480 | . . . . . 6 ⊢ (0 + 1) = 1 | |
17 | 16 | opeq2i 4627 | . . . . 5 ⊢ 〈0, (0 + 1)〉 = 〈0, 1〉 |
18 | 17 | oveq2i 6916 | . . . 4 ⊢ (𝑊 substr 〈0, (0 + 1)〉) = (𝑊 substr 〈0, 1〉) |
19 | 0nn0 11635 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 0 ∈ ℕ0) |
21 | hashgt0 13467 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 0 < (♯‘𝑊)) | |
22 | elfzo0 12804 | . . . . . 6 ⊢ (0 ∈ (0..^(♯‘𝑊)) ↔ (0 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 0 < (♯‘𝑊))) | |
23 | 20, 8, 21, 22 | syl3anbrc 1449 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 0 ∈ (0..^(♯‘𝑊))) |
24 | swrds1 13741 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊 substr 〈0, (0 + 1)〉) = 〈“(𝑊‘0)”〉) | |
25 | 23, 24 | syldan 587 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈0, (0 + 1)〉) = 〈“(𝑊‘0)”〉) |
26 | 18, 25 | syl5eqr 2875 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈0, 1〉) = 〈“(𝑊‘0)”〉) |
27 | 26 | oveq1d 6920 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → ((𝑊 substr 〈0, 1〉) ++ (𝑊 substr 〈1, (♯‘𝑊)〉)) = (〈“(𝑊‘0)”〉 ++ (𝑊 substr 〈1, (♯‘𝑊)〉))) |
28 | swrdidOLD 13715 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑊 substr 〈0, (♯‘𝑊)〉) = 𝑊) | |
29 | 28 | adantr 474 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈0, (♯‘𝑊)〉) = 𝑊) |
30 | 15, 27, 29 | 3eqtr3rd 2870 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊 = (〈“(𝑊‘0)”〉 ++ (𝑊 substr 〈1, (♯‘𝑊)〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 ∅c0 4144 〈cop 4403 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 Fincfn 8222 0cc0 10252 1c1 10253 + caddc 10255 < clt 10391 ℕcn 11350 ℕ0cn0 11618 ℤ≥cuz 11968 ...cfz 12619 ..^cfzo 12760 ♯chash 13410 Word cword 13574 ++ cconcat 13630 〈“cs1 13655 substr csubstr 13700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-xnn0 11691 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-hash 13411 df-word 13575 df-concat 13631 df-s1 13656 df-substr 13701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |