![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdexgOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of wrdexg 13680 as of 29-Apr-2023. (Contributed by Mario Carneiro, 26-Feb-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wrdexgOLD | ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdval 13673 | . 2 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙))) | |
2 | mapsspw 8240 | . . . . . 6 ⊢ (𝑆 ↑𝑚 (0..^𝑙)) ⊆ 𝒫 ((0..^𝑙) × 𝑆) | |
3 | elfzoelz 12852 | . . . . . . . . 9 ⊢ (𝑠 ∈ (0..^𝑙) → 𝑠 ∈ ℤ) | |
4 | 3 | ssriv 3856 | . . . . . . . 8 ⊢ (0..^𝑙) ⊆ ℤ |
5 | xpss1 5422 | . . . . . . . 8 ⊢ ((0..^𝑙) ⊆ ℤ → ((0..^𝑙) × 𝑆) ⊆ (ℤ × 𝑆)) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ ((0..^𝑙) × 𝑆) ⊆ (ℤ × 𝑆) |
7 | sspwb 5194 | . . . . . . 7 ⊢ (((0..^𝑙) × 𝑆) ⊆ (ℤ × 𝑆) ↔ 𝒫 ((0..^𝑙) × 𝑆) ⊆ 𝒫 (ℤ × 𝑆)) | |
8 | 6, 7 | mpbi 222 | . . . . . 6 ⊢ 𝒫 ((0..^𝑙) × 𝑆) ⊆ 𝒫 (ℤ × 𝑆) |
9 | 2, 8 | sstri 3861 | . . . . 5 ⊢ (𝑆 ↑𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆) |
10 | 9 | rgenw 3094 | . . . 4 ⊢ ∀𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆) |
11 | iunss 4831 | . . . 4 ⊢ (∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆) ↔ ∀𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆)) | |
12 | 10, 11 | mpbir 223 | . . 3 ⊢ ∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆) |
13 | zex 11800 | . . . . 5 ⊢ ℤ ∈ V | |
14 | xpexg 7288 | . . . . 5 ⊢ ((ℤ ∈ V ∧ 𝑆 ∈ 𝑉) → (ℤ × 𝑆) ∈ V) | |
15 | 13, 14 | mpan 677 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (ℤ × 𝑆) ∈ V) |
16 | 15 | pwexd 5129 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝒫 (ℤ × 𝑆) ∈ V) |
17 | ssexg 5079 | . . 3 ⊢ ((∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆) ∧ 𝒫 (ℤ × 𝑆) ∈ V) → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙)) ∈ V) | |
18 | 12, 16, 17 | sylancr 578 | . 2 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙)) ∈ V) |
19 | 1, 18 | eqeltrd 2860 | 1 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 ∀wral 3082 Vcvv 3409 ⊆ wss 3823 𝒫 cpw 4416 ∪ ciun 4788 × cxp 5401 (class class class)co 6974 ↑𝑚 cmap 8204 0cc0 10333 ℕ0cn0 11705 ℤcz 11791 ..^cfzo 12847 Word cword 13670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-1st 7499 df-2nd 7500 df-map 8206 df-pm 8207 df-neg 10671 df-z 11792 df-uz 12057 df-fz 12707 df-fzo 12848 df-word 13671 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |