![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wrdsplexOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of wrdsplex 31153 as of 12-Oct-2022. (Contributed by Thierry Arnoux, 11-Oct-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wrdsplexOLD | ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdcl 13705 | . . 3 ⊢ (𝑊 ∈ Word 𝑆 → (𝑊 substr 〈𝑁, (♯‘𝑊)〉) ∈ Word 𝑆) | |
2 | 1 | adantr 474 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈𝑁, (♯‘𝑊)〉) ∈ Word 𝑆) |
3 | simpl 476 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 ∈ Word 𝑆) | |
4 | simpr 479 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0...(♯‘𝑊))) | |
5 | elfzuz 12631 | . . . . 5 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (ℤ≥‘0)) | |
6 | eluzfz1 12641 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘0) → 0 ∈ (0...𝑁)) | |
7 | 4, 5, 6 | 3syl 18 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 0 ∈ (0...𝑁)) |
8 | elfzuz2 12639 | . . . . 5 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ≥‘0)) | |
9 | eluzfz2 12642 | . . . . 5 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘0) → (♯‘𝑊) ∈ (0...(♯‘𝑊))) | |
10 | 4, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (0...(♯‘𝑊))) |
11 | ccatswrd 13746 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊)))) → ((𝑊 substr 〈0, 𝑁〉) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉)) = (𝑊 substr 〈0, (♯‘𝑊)〉)) | |
12 | 3, 7, 4, 10, 11 | syl13anc 1495 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ((𝑊 substr 〈0, 𝑁〉) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉)) = (𝑊 substr 〈0, (♯‘𝑊)〉)) |
13 | swrd0valOLD 13707 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈0, 𝑁〉) = (𝑊 ↾ (0..^𝑁))) | |
14 | 13 | oveq1d 6920 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ((𝑊 substr 〈0, 𝑁〉) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉)) = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) |
15 | swrdidOLD 13715 | . . . 4 ⊢ (𝑊 ∈ Word 𝑆 → (𝑊 substr 〈0, (♯‘𝑊)〉) = 𝑊) | |
16 | 15 | adantr 474 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈0, (♯‘𝑊)〉) = 𝑊) |
17 | 12, 14, 16 | 3eqtr3rd 2870 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) |
18 | oveq2 6913 | . . 3 ⊢ (𝑣 = (𝑊 substr 〈𝑁, (♯‘𝑊)〉) → ((𝑊 ↾ (0..^𝑁)) ++ 𝑣) = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) | |
19 | 18 | rspceeqv 3544 | . 2 ⊢ (((𝑊 substr 〈𝑁, (♯‘𝑊)〉) ∈ Word 𝑆 ∧ 𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) |
20 | 2, 17, 19 | syl2anc 579 | 1 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 〈cop 4403 ↾ cres 5344 ‘cfv 6123 (class class class)co 6905 0cc0 10252 ℤ≥cuz 11968 ...cfz 12619 ..^cfzo 12760 ♯chash 13410 Word cword 13574 ++ cconcat 13630 substr csubstr 13700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-hash 13411 df-word 13575 df-concat 13631 df-substr 13701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |