Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksm1edgOLD Structured version   Visualization version   GIF version

Theorem wwlksm1edgOLD 27231
 Description: Obsolete version of wwlksm1edg 27230 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 19-Apr-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
wwlksm1edgOLD ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺))

Proof of Theorem wwlksm1edgOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2777 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2777 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iswwlks 27185 . . 3 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
4 lencl 13621 . . . . . . . . 9 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
5 simpl 476 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
6 1red 10377 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 1 ∈ ℝ)
7 2re 11449 . . . . . . . . . . . . . . 15 2 ∈ ℝ
87a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 2 ∈ ℝ)
9 nn0re 11652 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
109adantr 474 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
11 1le2 11591 . . . . . . . . . . . . . . 15 1 ≤ 2
1211a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 1 ≤ 2)
13 simpr 479 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
146, 8, 10, 12, 13letrd 10533 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 1 ≤ (♯‘𝑊))
155, 14jca 507 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑊)))
16 elnnnn0c 11689 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑊)))
1715, 16sylibr 226 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
18 lbfzo0 12827 . . . . . . . . . . 11 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
1917, 18sylibr 226 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 0 ∈ (0..^(♯‘𝑊)))
20 nn0ge2m1nn 11711 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ)
21 lbfzo0 12827 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘𝑊) − 1)) ↔ ((♯‘𝑊) − 1) ∈ ℕ)
2220, 21sylibr 226 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 0 ∈ (0..^((♯‘𝑊) − 1)))
2319, 22jca 507 . . . . . . . . 9 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (0 ∈ (0..^(♯‘𝑊)) ∧ 0 ∈ (0..^((♯‘𝑊) − 1))))
244, 23sylan 575 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0 ∈ (0..^(♯‘𝑊)) ∧ 0 ∈ (0..^((♯‘𝑊) − 1))))
25 inelcm 4256 . . . . . . . 8 ((0 ∈ (0..^(♯‘𝑊)) ∧ 0 ∈ (0..^((♯‘𝑊) − 1))) → ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) ≠ ∅)
2624, 25syl 17 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) ≠ ∅)
27 wrdfn 13614 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 Fn (0..^(♯‘𝑊)))
2827adantr 474 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → 𝑊 Fn (0..^(♯‘𝑊)))
29 fnresdisj 6247 . . . . . . . . . 10 (𝑊 Fn (0..^(♯‘𝑊)) → (((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅))
3028, 29syl 17 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅))
31 nn0ge2m1nn0 11712 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ0)
3210lem1d 11311 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
3331, 5, 323jca 1119 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
344, 33sylan 575 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
35 elfz2nn0 12749 . . . . . . . . . . 11 (((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ↔ (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
3634, 35sylibr 226 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
37 swrd0valOLD 13737 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑊 ↾ (0..^((♯‘𝑊) − 1))))
3837eqeq1d 2779 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = ∅ ↔ (𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅))
3938bicomd 215 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = ∅))
4036, 39syldan 585 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = ∅))
4130, 40bitr2d 272 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = ∅ ↔ ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) = ∅))
4241necon3bid 3012 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ≠ ∅ ↔ ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) ≠ ∅))
4326, 42mpbird 249 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ≠ ∅)
44433ad2antl2 1194 . . . . 5 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ≠ ∅)
45 swrdcl 13735 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ Word (Vtx‘𝐺))
4645a1d 25 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (2 ≤ (♯‘𝑊) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ Word (Vtx‘𝐺)))
47463ad2ant2 1125 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) → (2 ≤ (♯‘𝑊) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ Word (Vtx‘𝐺)))
4847imp 397 . . . . 5 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ Word (Vtx‘𝐺))
49 nn0z 11752 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
50 peano2zm 11772 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
5149, 50syl 17 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
52 peano2zm 11772 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) − 1) ∈ ℤ → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
5351, 52syl 17 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
5453adantr 474 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
5551adantr 474 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℤ)
56 peano2rem 10690 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) − 1) ∈ ℝ)
579, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℝ)
5857lem1d 11311 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1))
5958adantr 474 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1))
6054, 55, 593jca 1119 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((((♯‘𝑊) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ ∧ (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1)))
614, 60sylan 575 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((((♯‘𝑊) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ ∧ (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1)))
62 eluz2 11998 . . . . . . . . . . . . . 14 (((♯‘𝑊) − 1) ∈ (ℤ‘(((♯‘𝑊) − 1) − 1)) ↔ ((((♯‘𝑊) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ ∧ (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1)))
6361, 62sylibr 226 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (ℤ‘(((♯‘𝑊) − 1) − 1)))
649lem1d 11311 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
6564adantr 474 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
6631, 5, 653jca 1119 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
674, 66sylan 575 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
6867, 35sylibr 226 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
69 swrd0lenOLD 13738 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) = ((♯‘𝑊) − 1))
7069oveq1d 6937 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1) = (((♯‘𝑊) − 1) − 1))
7168, 70syldan 585 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1) = (((♯‘𝑊) − 1) − 1))
7271fveq2d 6450 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (ℤ‘((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) = (ℤ‘(((♯‘𝑊) − 1) − 1)))
7363, 72eleqtrrd 2861 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (ℤ‘((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)))
74 fzoss2 12815 . . . . . . . . . . . 12 (((♯‘𝑊) − 1) ∈ (ℤ‘((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) → (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
7573, 74syl 17 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
76 ssralv 3884 . . . . . . . . . . 11 ((0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) ⊆ (0..^((♯‘𝑊) − 1)) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
7775, 76syl 17 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
7868, 69syldan 585 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) = ((♯‘𝑊) − 1))
7978oveq1d 6937 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1) = (((♯‘𝑊) − 1) − 1))
8079oveq2d 6938 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) = (0..^(((♯‘𝑊) − 1) − 1)))
8180eleq2d 2844 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) ↔ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))))
82 simpl 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ∈ Word (Vtx‘𝐺))
8382adantr 474 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → 𝑊 ∈ Word (Vtx‘𝐺))
8436adantr 474 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
854, 31sylan 575 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ0)
86 nn0z 11752 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) − 1) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
87 fzossrbm1 12816 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) − 1) ∈ ℤ → (0..^(((♯‘𝑊) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
8886, 87syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) − 1) ∈ ℕ0 → (0..^(((♯‘𝑊) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
8985, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0..^(((♯‘𝑊) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
9089sselda 3820 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → 𝑥 ∈ (0..^((♯‘𝑊) − 1)))
91 swrd0fvOLD 13758 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥) = (𝑊𝑥))
9283, 84, 90, 91syl3anc 1439 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥) = (𝑊𝑥))
9392eqcomd 2783 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑊𝑥) = ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥))
944, 20sylan 575 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ)
95 elfzom1p1elfzo 12867 . . . . . . . . . . . . . . . . . . . 20 ((((♯‘𝑊) − 1) ∈ ℕ ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑥 + 1) ∈ (0..^((♯‘𝑊) − 1)))
9694, 95sylan 575 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑥 + 1) ∈ (0..^((♯‘𝑊) − 1)))
97 swrd0fvOLD 13758 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ (𝑥 + 1) ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1)) = (𝑊‘(𝑥 + 1)))
9883, 84, 96, 97syl3anc 1439 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1)) = (𝑊‘(𝑥 + 1)))
9998eqcomd 2783 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑊‘(𝑥 + 1)) = ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1)))
10093, 99preq12d 4507 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))})
101100ex 403 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1)) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))}))
10281, 101sylbid 232 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))}))
103102imp 397 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1))) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))})
104103eleq1d 2843 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1))) → ({(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
105104biimpd 221 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1))) → ({(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
106105ralimdva 3143 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
10777, 106syld 47 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
108107expcom 404 . . . . . . . 8 (2 ≤ (♯‘𝑊) → (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺))))
109108com3l 89 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → (2 ≤ (♯‘𝑊) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺))))
110109a1i 11 . . . . . 6 (𝑊 ≠ ∅ → (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → (2 ≤ (♯‘𝑊) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))))
1111103imp1 1409 . . . . 5 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺))
1121, 2iswwlks 27185 . . . . 5 ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺) ↔ ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ≠ ∅ ∧ (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
11344, 48, 111, 112syl3anbrc 1400 . . . 4 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺))
114113ex 403 . . 3 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) → (2 ≤ (♯‘𝑊) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺)))
1153, 114sylbi 209 . 2 (𝑊 ∈ (WWalks‘𝐺) → (2 ≤ (♯‘𝑊) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺)))
116115imp 397 1 ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2106   ≠ wne 2968  ∀wral 3089   ∩ cin 3790   ⊆ wss 3791  ∅c0 4140  {cpr 4399  ⟨cop 4403   class class class wbr 4886   ↾ cres 5357   Fn wfn 6130  ‘cfv 6135  (class class class)co 6922  ℝcr 10271  0cc0 10272  1c1 10273   + caddc 10275   ≤ cle 10412   − cmin 10606  ℕcn 11374  2c2 11430  ℕ0cn0 11642  ℤcz 11728  ℤ≥cuz 11992  ...cfz 12643  ..^cfzo 12784  ♯chash 13435  Word cword 13599   substr csubstr 13730  Vtxcvtx 26344  Edgcedg 26395  WWalkscwwlks 27174 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-substr 13731  df-wwlks 27179 This theorem is referenced by:  wwlksnextproplem3OLD  27288
 Copyright terms: Public domain W3C validator