Step | Hyp | Ref
| Expression |
1 | | wwlksnext.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | wwlksnext.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | wwlknp 27142 |
. . . 4
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
4 | | wwlksnredOLD 27203 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺))) |
5 | 4 | ad2antrr 719 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺))) |
6 | | fveqeq2 6442 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 = (𝑇 ++ 〈“𝑆”〉) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))) |
7 | 6 | 3ad2ant2 1170 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))) |
8 | 7 | adantl 475 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))) |
9 | | s1cl 13662 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑆 ∈ 𝑉 → 〈“𝑆”〉 ∈ Word 𝑉) |
10 | 9 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) → 〈“𝑆”〉 ∈ Word 𝑉) |
11 | 10 | anim2i 612 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑇 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ 𝑆 ∈ 𝑉)) → (𝑇 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉)) |
12 | 11 | ancoms 452 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → (𝑇 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉)) |
13 | | ccatlen 13635 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉) → (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((♯‘𝑇) +
(♯‘〈“𝑆”〉))) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((♯‘𝑇) +
(♯‘〈“𝑆”〉))) |
15 | 14 | eqeq1d 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1) ↔ ((♯‘𝑇) +
(♯‘〈“𝑆”〉)) = ((𝑁 + 1) + 1))) |
16 | | s1len 13666 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(♯‘〈“𝑆”〉) = 1 |
17 | 16 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → (♯‘〈“𝑆”〉) =
1) |
18 | 17 | oveq2d 6921 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘𝑇) + (♯‘〈“𝑆”〉)) =
((♯‘𝑇) +
1)) |
19 | 18 | eqeq1d 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → (((♯‘𝑇) + (♯‘〈“𝑆”〉)) = ((𝑁 + 1) + 1) ↔
((♯‘𝑇) + 1) =
((𝑁 + 1) +
1))) |
20 | | lencl 13593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑇 ∈ Word 𝑉 → (♯‘𝑇) ∈
ℕ0) |
21 | 20 | nn0cnd 11680 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇 ∈ Word 𝑉 → (♯‘𝑇) ∈ ℂ) |
22 | 21 | adantl 475 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → (♯‘𝑇) ∈ ℂ) |
23 | | peano2nn0 11660 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
24 | 23 | nn0cnd 11680 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
25 | 24 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → (𝑁 + 1) ∈ ℂ) |
26 | | 1cnd 10351 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → 1 ∈ ℂ) |
27 | 22, 25, 26 | addcan2d 10559 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → (((♯‘𝑇) + 1) = ((𝑁 + 1) + 1) ↔ (♯‘𝑇) = (𝑁 + 1))) |
28 | 15, 19, 27 | 3bitrd 297 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1) ↔ (♯‘𝑇) = (𝑁 + 1))) |
29 | | opeq2 4624 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 + 1) = (♯‘𝑇) → 〈0, (𝑁 + 1)〉 = 〈0,
(♯‘𝑇)〉) |
30 | 29 | eqcoms 2833 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑇) =
(𝑁 + 1) → 〈0,
(𝑁 + 1)〉 = 〈0,
(♯‘𝑇)〉) |
31 | 30 | oveq2d 6921 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑇) =
(𝑁 + 1) → ((𝑇 ++ 〈“𝑆”〉) substr 〈0,
(𝑁 + 1)〉) = ((𝑇 ++ 〈“𝑆”〉) substr 〈0,
(♯‘𝑇)〉)) |
32 | | swrdccat1OLD 13747 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉) → ((𝑇 ++ 〈“𝑆”〉) substr 〈0,
(♯‘𝑇)〉) =
𝑇) |
33 | 12, 32 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((𝑇 ++ 〈“𝑆”〉) substr 〈0,
(♯‘𝑇)〉) =
𝑇) |
34 | 31, 33 | sylan9eqr 2883 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) ∧ (♯‘𝑇) = (𝑁 + 1)) → ((𝑇 ++ 〈“𝑆”〉) substr 〈0, (𝑁 + 1)〉) = 𝑇) |
35 | 34 | ex 403 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘𝑇) = (𝑁 + 1) → ((𝑇 ++ 〈“𝑆”〉) substr 〈0, (𝑁 + 1)〉) = 𝑇)) |
36 | 28, 35 | sylbid 232 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1) → ((𝑇 ++ 〈“𝑆”〉) substr 〈0, (𝑁 + 1)〉) = 𝑇)) |
37 | 36 | 3ad2antr1 1245 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1) → ((𝑇 ++ 〈“𝑆”〉) substr 〈0, (𝑁 + 1)〉) = 𝑇)) |
38 | 8, 37 | sylbid 232 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑇 ++ 〈“𝑆”〉) substr 〈0, (𝑁 + 1)〉) = 𝑇)) |
39 | 38 | imp 397 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑇 ++ 〈“𝑆”〉) substr 〈0, (𝑁 + 1)〉) = 𝑇) |
40 | | oveq1 6912 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 = (𝑇 ++ 〈“𝑆”〉) → (𝑊 substr 〈0, (𝑁 + 1)〉) = ((𝑇 ++ 〈“𝑆”〉) substr 〈0, (𝑁 + 1)〉)) |
41 | 40 | eqeq1d 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑊 = (𝑇 ++ 〈“𝑆”〉) → ((𝑊 substr 〈0, (𝑁 + 1)〉) = 𝑇 ↔ ((𝑇 ++ 〈“𝑆”〉) substr 〈0, (𝑁 + 1)〉) = 𝑇)) |
42 | 41 | 3ad2ant2 1170 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → ((𝑊 substr 〈0, (𝑁 + 1)〉) = 𝑇 ↔ ((𝑇 ++ 〈“𝑆”〉) substr 〈0, (𝑁 + 1)〉) = 𝑇)) |
43 | 42 | ad2antlr 720 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑊 substr 〈0, (𝑁 + 1)〉) = 𝑇 ↔ ((𝑇 ++ 〈“𝑆”〉) substr 〈0, (𝑁 + 1)〉) = 𝑇)) |
44 | 39, 43 | mpbird 249 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr 〈0, (𝑁 + 1)〉) = 𝑇) |
45 | 44 | eleq1d 2891 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺) ↔ 𝑇 ∈ (𝑁 WWalksN 𝐺))) |
46 | 45 | biimpd 221 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺) → 𝑇 ∈ (𝑁 WWalksN 𝐺))) |
47 | 46 | ex 403 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))) |
48 | 47 | com23 86 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))) |
49 | 5, 48 | syld 47 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))) |
50 | 49 | com13 88 |
. . . . 5
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (((𝑁 ∈ ℕ0 ∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))) |
51 | 50 | 3ad2ant2 1170 |
. . . 4
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (((𝑁 ∈ ℕ0 ∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))) |
52 | 3, 51 | mpcom 38 |
. . 3
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (((𝑁 ∈ ℕ0 ∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑇 ∈ (𝑁 WWalksN 𝐺))) |
53 | 52 | com12 32 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → 𝑇 ∈ (𝑁 WWalksN 𝐺))) |
54 | 1, 2 | wwlksnext 27204 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺)) |
55 | | eleq1 2894 |
. . . . . . . . . . 11
⊢ (𝑊 = (𝑇 ++ 〈“𝑆”〉) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺))) |
56 | 54, 55 | syl5ibrcom 239 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑊 = (𝑇 ++ 〈“𝑆”〉) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) |
57 | 56 | 3exp 1154 |
. . . . . . . . 9
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑆 ∈ 𝑉 → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑊 = (𝑇 ++ 〈“𝑆”〉) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))) |
58 | 57 | com23 86 |
. . . . . . . 8
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑆 ∈ 𝑉 → (𝑊 = (𝑇 ++ 〈“𝑆”〉) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))) |
59 | 58 | com14 96 |
. . . . . . 7
⊢ (𝑊 = (𝑇 ++ 〈“𝑆”〉) → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑆 ∈ 𝑉 → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))) |
60 | 59 | imp 397 |
. . . . . 6
⊢ ((𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑆 ∈ 𝑉 → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
61 | 60 | 3adant1 1166 |
. . . . 5
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑆 ∈ 𝑉 → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
62 | 61 | com12 32 |
. . . 4
⊢ (𝑆 ∈ 𝑉 → ((𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
63 | 62 | adantl 475 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) → ((𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
64 | 63 | imp 397 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) |
65 | 53, 64 | impbid 204 |
1
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ 𝑊 = (𝑇 ++ 〈“𝑆”〉) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑇 ∈ (𝑁 WWalksN 𝐺))) |