Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextfunOLD Structured version   Visualization version   GIF version

Theorem wwlksnextfunOLD 27167
 Description: Obsolete version of wwlksnextfun 27162 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
wwlksnextbij0OLD.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0OLD.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0OLD.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
wwlksnextbij0OLD.r 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
wwlksnextbij0OLD.f 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
Assertion
Ref Expression
wwlksnextfunOLD (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊   𝑡,𝐷   𝑛,𝐸   𝑤,𝐸   𝑡,𝑁,𝑤   𝑡,𝑅   𝑛,𝑉   𝑤,𝑉   𝑛,𝑊   𝑡,𝑛
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐸(𝑡)   𝐹(𝑤,𝑡,𝑛)   𝐺(𝑡,𝑛)   𝑁(𝑛)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem wwlksnextfunOLD
StepHypRef Expression
1 fveqeq2 6418 . . . . . 6 (𝑤 = 𝑡 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑡) = (𝑁 + 2)))
2 oveq1 6883 . . . . . . 7 (𝑤 = 𝑡 → (𝑤 substr ⟨0, (𝑁 + 1)⟩) = (𝑡 substr ⟨0, (𝑁 + 1)⟩))
32eqeq1d 2799 . . . . . 6 (𝑤 = 𝑡 → ((𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ↔ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊))
4 fveq2 6409 . . . . . . . 8 (𝑤 = 𝑡 → (lastS‘𝑤) = (lastS‘𝑡))
54preq2d 4462 . . . . . . 7 (𝑤 = 𝑡 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑡)})
65eleq1d 2861 . . . . . 6 (𝑤 = 𝑡 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
71, 3, 63anbi123d 1561 . . . . 5 (𝑤 = 𝑡 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)))
8 wwlksnextbij0OLD.d . . . . 5 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
97, 8elrab2 3558 . . . 4 (𝑡𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)))
10 simpll 784 . . . . . . . . . . . 12 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 𝑡 ∈ Word 𝑉)
11 nn0re 11586 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 2re 11383 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1312a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
14 nn0ge0 11603 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
15 2pos 11419 . . . . . . . . . . . . . . . . 17 0 < 2
1615a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 < 2)
1711, 13, 14, 16addgegt0d 10891 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 2))
1817ad2antlr 719 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 0 < (𝑁 + 2))
19 breq2 4845 . . . . . . . . . . . . . . 15 ((♯‘𝑡) = (𝑁 + 2) → (0 < (♯‘𝑡) ↔ 0 < (𝑁 + 2)))
2019adantl 474 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → (0 < (♯‘𝑡) ↔ 0 < (𝑁 + 2)))
2118, 20mpbird 249 . . . . . . . . . . . . 13 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 0 < (♯‘𝑡))
22 hashgt0n0 13402 . . . . . . . . . . . . 13 ((𝑡 ∈ Word 𝑉 ∧ 0 < (♯‘𝑡)) → 𝑡 ≠ ∅)
2310, 21, 22syl2anc 580 . . . . . . . . . . . 12 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 𝑡 ≠ ∅)
2410, 23jca 508 . . . . . . . . . . 11 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))
2524expcom 403 . . . . . . . . . 10 ((♯‘𝑡) = (𝑁 + 2) → ((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
26253ad2ant1 1164 . . . . . . . . 9 (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) → ((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
2726expd 405 . . . . . . . 8 (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) → (𝑡 ∈ Word 𝑉 → (𝑁 ∈ ℕ0 → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))))
2827impcom 397 . . . . . . 7 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
2928impcom 397 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))
30 lswcl 13584 . . . . . 6 ((𝑡 ∈ Word 𝑉𝑡 ≠ ∅) → (lastS‘𝑡) ∈ 𝑉)
3129, 30syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → (lastS‘𝑡) ∈ 𝑉)
32 simprr3 1292 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)
3331, 32jca 508 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
349, 33sylan2b 588 . . 3 ((𝑁 ∈ ℕ0𝑡𝐷) → ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
35 preq2 4456 . . . . 5 (𝑛 = (lastS‘𝑡) → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), (lastS‘𝑡)})
3635eleq1d 2861 . . . 4 (𝑛 = (lastS‘𝑡) → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
37 wwlksnextbij0OLD.r . . . 4 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
3836, 37elrab2 3558 . . 3 ((lastS‘𝑡) ∈ 𝑅 ↔ ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
3934, 38sylibr 226 . 2 ((𝑁 ∈ ℕ0𝑡𝐷) → (lastS‘𝑡) ∈ 𝑅)
40 wwlksnextbij0OLD.f . 2 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
4139, 40fmptd 6608 1 (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 385   ∧ w3a 1108   = wceq 1653   ∈ wcel 2157   ≠ wne 2969  {crab 3091  ∅c0 4113  {cpr 4368  ⟨cop 4372   class class class wbr 4841   ↦ cmpt 4920  ⟶wf 6095  ‘cfv 6099  (class class class)co 6876  ℝcr 10221  0cc0 10222  1c1 10223   + caddc 10225   < clt 10361  2c2 11364  ℕ0cn0 11576  ♯chash 13366  Word cword 13530  lastSclsw 13578   substr csubstr 13661  Vtxcvtx 26223  Edgcedg 26274 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-n0 11577  df-xnn0 11649  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-hash 13367  df-word 13531  df-lsw 13579 This theorem is referenced by:  wwlksnextinjOLD  27168  wwlksnextsurOLD  27169
 Copyright terms: Public domain W3C validator