Step | Hyp | Ref
| Expression |
1 | | eqid 2778 |
. . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | | wwlksnextprop.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | wwlknp 27209 |
. . . 4
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
4 | | fzonn0p1 12869 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0..^(𝑁 + 1))) |
5 | 4 | adantl 475 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (0..^(𝑁 + 1))) |
6 | | fveq2 6448 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑁 → (𝑊‘𝑖) = (𝑊‘𝑁)) |
7 | | fvoveq1 6947 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑁 → (𝑊‘(𝑖 + 1)) = (𝑊‘(𝑁 + 1))) |
8 | 6, 7 | preq12d 4508 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑁 → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))}) |
9 | 8 | eleq1d 2844 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑁 → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
10 | 9 | rspcv 3507 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
11 | 5, 10 | syl 17 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
12 | 11 | imp 397 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸) |
13 | | simpll 757 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺)) |
14 | | 1zzd 11765 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ∈
ℤ) |
15 | | lencl 13627 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈
ℕ0) |
16 | 15 | nn0zd 11837 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈
ℤ) |
17 | 16 | ad2antrr 716 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(♯‘𝑊) ∈
ℤ) |
18 | | peano2nn0 11689 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
19 | 18 | nn0zd 11837 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℤ) |
20 | 19 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈
ℤ) |
21 | 14, 17, 20 | 3jca 1119 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (1
∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ)) |
22 | | nn0ge0 11674 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
23 | | 1red 10379 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℝ) |
24 | | nn0re 11657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
25 | 23, 24 | addge02d 10967 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (0 ≤ 𝑁 ↔ 1
≤ (𝑁 +
1))) |
26 | 22, 25 | mpbid 224 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ 1 ≤ (𝑁 +
1)) |
27 | 26 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ≤
(𝑁 + 1)) |
28 | 18 | nn0red 11708 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℝ) |
29 | 28 | lep1d 11312 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)) |
30 | | breq2 4892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) →
((𝑁 + 1) ≤
(♯‘𝑊) ↔
(𝑁 + 1) ≤ ((𝑁 + 1) + 1))) |
31 | 29, 30 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ ((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (♯‘𝑊))) |
32 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑊)
∈ ℕ0 → (𝑁 ∈ ℕ0 →
((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (♯‘𝑊)))) |
33 | 32 | com23 86 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑊)
∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (♯‘𝑊)))) |
34 | 15, 33 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (♯‘𝑊)))) |
35 | 34 | imp31 410 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (♯‘𝑊)) |
36 | 27, 35 | jca 507 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (1 ≤
(𝑁 + 1) ∧ (𝑁 + 1) ≤ (♯‘𝑊))) |
37 | | elfz2 12655 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 + 1) ∈
(1...(♯‘𝑊))
↔ ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (1 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ (♯‘𝑊)))) |
38 | 21, 36, 37 | sylanbrc 578 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈
(1...(♯‘𝑊))) |
39 | 13, 38 | jca 507 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))) |
40 | | swrd0fvlswOLD 13768 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 substr 〈0, (𝑁 + 1)〉)) = (𝑊‘((𝑁 + 1) − 1))) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)) =
(𝑊‘((𝑁 + 1) −
1))) |
42 | | nn0cn 11658 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
43 | | 1cnd 10373 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℂ) |
44 | 42, 43 | pncand 10737 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 1)
= 𝑁) |
45 | 44 | fveq2d 6452 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑊‘((𝑁 + 1) − 1)) = (𝑊‘𝑁)) |
46 | 45 | adantl 475 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((𝑁 + 1) − 1)) = (𝑊‘𝑁)) |
47 | 41, 46 | eqtrd 2814 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)) =
(𝑊‘𝑁)) |
48 | | lsw 13660 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
49 | 48 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
50 | | fvoveq1 6947 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1))) |
51 | 50 | adantl 475 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1))) |
52 | 18 | nn0cnd 11709 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
53 | 52, 43 | pncand 10737 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (((𝑁 + 1) + 1)
− 1) = (𝑁 +
1)) |
54 | 53 | fveq2d 6452 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑊‘(((𝑁 + 1) + 1) − 1)) = (𝑊‘(𝑁 + 1))) |
55 | 51, 54 | sylan9eq 2834 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 + 1))) |
56 | 49, 55 | eqtrd 2814 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘𝑊) = (𝑊‘(𝑁 + 1))) |
57 | 47, 56 | preq12d 4508 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} = {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))}) |
58 | 57 | eleq1d 2844 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
({(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸 ↔ {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
59 | 58 | adantr 474 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ({(lastS‘(𝑊 substr 〈0, (𝑁 + 1)〉)), (lastS‘𝑊)} ∈ 𝐸 ↔ {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
60 | 12, 59 | mpbird 249 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(lastS‘(𝑊 substr 〈0, (𝑁 + 1)〉)), (lastS‘𝑊)} ∈ 𝐸) |
61 | 60 | exp31 412 |
. . . . . 6
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 →
(∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(lastS‘(𝑊 substr 〈0, (𝑁 + 1)〉)), (lastS‘𝑊)} ∈ 𝐸))) |
62 | 61 | com23 86 |
. . . . 5
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸))) |
63 | 62 | 3impia 1106 |
. . . 4
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸)) |
64 | 3, 63 | syl 17 |
. . 3
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸)) |
65 | | wwlksnextprop.x |
. . 3
⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) |
66 | 64, 65 | eleq2s 2877 |
. 2
⊢ (𝑊 ∈ 𝑋 → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸)) |
67 | 66 | imp 397 |
1
⊢ ((𝑊 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸) |