MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnfiOLD Structured version   Visualization version   GIF version

Theorem wwlksnfiOLD 27409
Description: Obsolete version of wwlksnfiOLD 27409 as of 4-May-2023. (Contributed by Alexander van der Vekens, 30-Jul-2018.) (Revised by AV, 19-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
wwlksnfiOLD ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)

Proof of Theorem wwlksnfiOLD
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksn 27326 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
2 df-rab 3097 . . . . . . . 8 {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))}
31, 2syl6eq 2830 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))})
43adantl 474 . . . . . 6 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))})
5 eqid 2778 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
6 eqid 2778 . . . . . . . . . . 11 (Edg‘𝐺) = (Edg‘𝐺)
75, 6iswwlks 27325 . . . . . . . . . 10 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
87a1i 11 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
98anbi1d 620 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))))
109abbidv 2843 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))})
11 3anan12 1077 . . . . . . . . . . 11 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1211anbi1i 614 . . . . . . . . . 10 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (♯‘𝑤) = (𝑁 + 1)))
13 anass 461 . . . . . . . . . 10 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))))
1412, 13bitri 267 . . . . . . . . 9 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))))
1514abbii 2844 . . . . . . . 8 {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))}
16 df-rab 3097 . . . . . . . 8 {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))}
1715, 16eqtr4i 2805 . . . . . . 7 {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))}
1810, 17syl6eq 2830 . . . . . 6 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))})
194, 18eqtrd 2814 . . . . 5 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))})
2019adantr 473 . . . 4 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ (Vtx‘𝐺) ∈ Fin) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))})
21 peano2nn0 11752 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2221adantl 474 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
2322anim2i 607 . . . . . . 7 (((Vtx‘𝐺) ∈ Fin ∧ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)) → ((Vtx‘𝐺) ∈ Fin ∧ (𝑁 + 1) ∈ ℕ0))
2423ancoms 451 . . . . . 6 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ (Vtx‘𝐺) ∈ Fin) → ((Vtx‘𝐺) ∈ Fin ∧ (𝑁 + 1) ∈ ℕ0))
25 wrdnfiOLD 13714 . . . . . 6 (((Vtx‘𝐺) ∈ Fin ∧ (𝑁 + 1) ∈ ℕ0) → {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ Fin)
2624, 25syl 17 . . . . 5 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ (Vtx‘𝐺) ∈ Fin) → {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ Fin)
27 simpr 477 . . . . . . 7 (((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1))
2827rgenw 3100 . . . . . 6 𝑤 ∈ Word (Vtx‘𝐺)(((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1))
29 ss2rab 3939 . . . . . 6 ({𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ↔ ∀𝑤 ∈ Word (Vtx‘𝐺)(((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1)))
3028, 29mpbir 223 . . . . 5 {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}
31 ssfi 8535 . . . . 5 (({𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ Fin ∧ {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) → {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ∈ Fin)
3226, 30, 31sylancl 577 . . . 4 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ (Vtx‘𝐺) ∈ Fin) → {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ∈ Fin)
3320, 32eqeltrd 2866 . . 3 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ (Vtx‘𝐺) ∈ Fin) → (𝑁 WWalksN 𝐺) ∈ Fin)
3433ex 405 . 2 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin))
35 wwlksnndef 27407 . . . . 5 ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ0) → (𝑁 WWalksN 𝐺) = ∅)
36 ioran 966 . . . . . 6 (¬ (𝐺 ∉ V ∨ 𝑁 ∉ ℕ0) ↔ (¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0))
37 nnel 3082 . . . . . . 7 𝐺 ∉ V ↔ 𝐺 ∈ V)
38 nnel 3082 . . . . . . 7 𝑁 ∉ ℕ0𝑁 ∈ ℕ0)
3937, 38anbi12i 617 . . . . . 6 ((¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0) ↔ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0))
4036, 39sylbb 211 . . . . 5 (¬ (𝐺 ∉ V ∨ 𝑁 ∉ ℕ0) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0))
4135, 40nsyl4 158 . . . 4 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) = ∅)
42 0fin 8543 . . . . 5 ∅ ∈ Fin
4342a1i 11 . . . 4 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ∅ ∈ Fin)
4441, 43eqeltrd 2866 . . 3 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) ∈ Fin)
4544a1d 25 . 2 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin))
4634, 45pm2.61i 177 1 ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2050  {cab 2758  wne 2967  wnel 3073  wral 3088  {crab 3092  Vcvv 3415  wss 3831  c0 4180  {cpr 4444  cfv 6190  (class class class)co 6978  Fincfn 8308  0cc0 10337  1c1 10338   + caddc 10340  cmin 10672  0cn0 11710  ..^cfzo 12852  chash 13508  Word cword 13675  Vtxcvtx 26487  Edgcedg 26538  WWalkscwwlks 27314   WWalksN cwwlksn 27315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-pm 8211  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-dju 9126  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-fzo 12853  df-seq 13188  df-exp 13248  df-hash 13509  df-word 13676  df-wwlks 27319  df-wwlksn 27320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator