MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnredwwlkn0OLD Structured version   Visualization version   GIF version

Theorem wwlksnredwwlkn0OLD 27277
Description: Obsolete version of wwlksnredwwlkn0 27276 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wwlksnredwwlkn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnredwwlkn0OLD ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑁   𝑦,𝑊   𝑦,𝑃

Proof of Theorem wwlksnredwwlkn0OLD
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnredwwlkn.e . . . . 5 𝐸 = (Edg‘𝐺)
21wwlksnredwwlknOLD 27275 . . . 4 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
32imp 397 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
4 simpl 476 . . . . . . . . 9 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦)
54adantl 475 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦)
6 fveq1 6447 . . . . . . . . . . . . . 14 (𝑦 = (𝑊 substr ⟨0, (𝑁 + 1)⟩) → (𝑦‘0) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0))
76eqcoms 2786 . . . . . . . . . . . . 13 ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 → (𝑦‘0) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0))
87adantr 474 . . . . . . . . . . . 12 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑦‘0) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0))
9 eqid 2778 . . . . . . . . . . . . . . . . . . 19 (Vtx‘𝐺) = (Vtx‘𝐺)
109, 1wwlknp 27209 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
11 nn0p1nn 11688 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
12 peano2nn0 11689 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
13 nn0re 11657 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
14 lep1 11219 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℝ → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
1512, 13, 143syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
16 peano2nn0 11689 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
1716nn0zd 11837 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℤ)
18 fznn 12731 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 + 1) + 1) ∈ ℤ → ((𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1))))
1912, 17, 183syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → ((𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1))))
2011, 15, 19mpbir2and 703 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
21 oveq2 6932 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (1...(♯‘𝑊)) = (1...((𝑁 + 1) + 1)))
2221eleq2d 2845 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
2320, 22syl5ibr 238 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(♯‘𝑊))))
2423adantl 475 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(♯‘𝑊))))
25 simpl 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → 𝑊 ∈ Word (Vtx‘𝐺))
2624, 25jctild 521 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
27263adant3 1123 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
2810, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
2928impcom 398 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3029adantl 475 . . . . . . . . . . . . . . 15 (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3130adantr 474 . . . . . . . . . . . . . 14 ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3231adantl 475 . . . . . . . . . . . . 13 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
33 swrd0fv0OLD 13765 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑊‘0))
3432, 33syl 17 . . . . . . . . . . . 12 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑊‘0))
35 simprll 769 . . . . . . . . . . . 12 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑊‘0) = 𝑃)
368, 34, 353eqtrd 2818 . . . . . . . . . . 11 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑦‘0) = 𝑃)
3736ex 403 . . . . . . . . . 10 ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 → ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑦‘0) = 𝑃))
3837adantr 474 . . . . . . . . 9 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑦‘0) = 𝑃))
3938impcom 398 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → (𝑦‘0) = 𝑃)
40 simpr 479 . . . . . . . . 9 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)
4140adantl 475 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)
425, 39, 413jca 1119 . . . . . . 7 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
4342ex 403 . . . . . 6 ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4443reximdva 3198 . . . . 5 (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4544ex 403 . . . 4 ((𝑊‘0) = 𝑃 → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))))
4645com13 88 . . 3 (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))))
473, 46mpcom 38 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4829, 33syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑊‘0))
4948eqcomd 2784 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0))
5049adantl 475 . . . . . . 7 ((((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊‘0) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0))
51 fveq1 6447 . . . . . . . . 9 ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑦‘0))
5251adantr 474 . . . . . . . 8 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑦‘0))
5352adantr 474 . . . . . . 7 ((((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑦‘0))
54 simpr 479 . . . . . . . 8 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃) → (𝑦‘0) = 𝑃)
5554adantr 474 . . . . . . 7 ((((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑦‘0) = 𝑃)
5650, 53, 553eqtrd 2818 . . . . . 6 ((((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊‘0) = 𝑃)
5756ex 403 . . . . 5 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = 𝑃))
58573adant3 1123 . . . 4 (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = 𝑃))
5958com12 32 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊‘0) = 𝑃))
6059rexlimdvw 3217 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊‘0) = 𝑃))
6147, 60impbid 204 1 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wrex 3091  {cpr 4400  cop 4404   class class class wbr 4888  cfv 6137  (class class class)co 6924  cr 10273  0cc0 10274  1c1 10275   + caddc 10277  cle 10414  cn 11379  0cn0 11647  cz 11733  ...cfz 12648  ..^cfzo 12789  chash 13441  Word cword 13605  lastSclsw 13658   substr csubstr 13736  Vtxcvtx 26361  Edgcedg 26412   WWalksN cwwlksn 27192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-n0 11648  df-z 11734  df-uz 11998  df-fz 12649  df-fzo 12790  df-hash 13442  df-word 13606  df-lsw 13659  df-substr 13737  df-wwlks 27196  df-wwlksn 27197
This theorem is referenced by:  rusgrnumwwlksOLD  27372
  Copyright terms: Public domain W3C validator