MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksubclwwlkOLD Structured version   Visualization version   GIF version

Theorem wwlksubclwwlkOLD 27410
Description: Obsolete version of wwlksubclwwlk 27409 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 28-Apr-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
wwlksubclwwlkOLD ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺)))

Proof of Theorem wwlksubclwwlkOLD
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2824 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 27379 . . . . 5 (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑋), (𝑋‘0)} ∈ (Edg‘𝐺)))
4 swrdcl 13704 . . . . . . . . . 10 (𝑋 ∈ Word (Vtx‘𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
54adantr 474 . . . . . . . . 9 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
65ad2antrr 719 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
7 nnz 11726 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
8 eluzp1m1 11991 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
98ex 403 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
107, 9syl 17 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
11 peano2zm 11747 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
127, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℤ)
13 nnre 11357 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413lem1d 11286 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑀 − 1) ≤ 𝑀)
15 eluzuzle 11976 . . . . . . . . . . . . . . . . . 18 (((𝑀 − 1) ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀) → ((𝑁 − 1) ∈ (ℤ𝑀) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1612, 14, 15syl2anc 581 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((𝑁 − 1) ∈ (ℤ𝑀) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1710, 16syld 47 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1817imp 397 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
19 fzoss2 12790 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
2018, 19syl 17 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
2120adantl 475 . . . . . . . . . . . . 13 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
22 ssralv 3890 . . . . . . . . . . . . 13 ((0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2321, 22syl 17 . . . . . . . . . . . 12 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
24 simpll 785 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑋 ∈ Word (Vtx‘𝐺))
2524adantr 474 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑋 ∈ Word (Vtx‘𝐺))
26 eluz2 11973 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))
2713adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ∈ ℝ)
28 peano2re 10527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
2913, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℝ)
3029adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 + 1) ∈ ℝ)
31 zre 11707 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3231ad2antrl 721 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑁 ∈ ℝ)
3313lep1d 11284 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 + 1))
3433adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ≤ (𝑀 + 1))
35 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 1) ≤ 𝑁)
3635adantl 475 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 + 1) ≤ 𝑁)
3727, 30, 32, 34, 36letrd 10512 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀𝑁)
38 nnnn0 11625 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3938ad2antrr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
40 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
4140adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
42 0red 10359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
4313adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
4431adantl 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
4542, 43, 443jca 1164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
4645adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
4738nn0ge0d 11680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
4847adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 ≤ 𝑀)
4948anim1i 610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (0 ≤ 𝑀𝑀𝑁))
50 letr 10449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
5146, 49, 50sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 0 ≤ 𝑁)
5241, 51jca 509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
53 elnn0z 11716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
5452, 53sylibr 226 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
5554adantlrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
56 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑀𝑁)
5739, 55, 563jca 1164 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5837, 57mpdan 680 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5958expcom 404 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
60593adant1 1166 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
6126, 60sylbi 209 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
6261impcom 398 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
63 elfz2nn0 12724 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
6462, 63sylibr 226 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ (0...𝑁))
6564adantl 475 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 ∈ (0...𝑁))
66 oveq2 6912 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑋) = 𝑁 → (0...(♯‘𝑋)) = (0...𝑁))
6766eleq2d 2891 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑋) = 𝑁 → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6867adantl 475 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6968adantr 474 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
7065, 69mpbird 249 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 ∈ (0...(♯‘𝑋)))
7170adantr 474 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑀 ∈ (0...(♯‘𝑋)))
72 eluz2 11973 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ (ℤ‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
7312, 7, 14, 72syl3anbrc 1449 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘(𝑀 − 1)))
74 fzoss2 12790 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (0..^(𝑀 − 1)) ⊆ (0..^𝑀))
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (0..^(𝑀 − 1)) ⊆ (0..^𝑀))
7675sseld 3825 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑖 ∈ (0..^(𝑀 − 1)) → 𝑖 ∈ (0..^𝑀)))
7776ad2antrl 721 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑖 ∈ (0..^(𝑀 − 1)) → 𝑖 ∈ (0..^𝑀)))
7877imp 397 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
79 swrd0fvOLD 13727 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖) = (𝑋𝑖))
8025, 71, 78, 79syl3anc 1496 . . . . . . . . . . . . . . . 16 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖) = (𝑋𝑖))
8180eqcomd 2830 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑋𝑖) = ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖))
82 fzonn0p1p1 12841 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^((𝑀 − 1) + 1)))
83 nncn 11358 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
84 npcan1 10778 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → ((𝑀 − 1) + 1) = 𝑀)
8685oveq2d 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (0..^((𝑀 − 1) + 1)) = (0..^𝑀))
8786eleq2d 2891 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → ((𝑖 + 1) ∈ (0..^((𝑀 − 1) + 1)) ↔ (𝑖 + 1) ∈ (0..^𝑀)))
8882, 87syl5ib 236 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^𝑀)))
8988ad2antrl 721 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^𝑀)))
9089imp 397 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑖 + 1) ∈ (0..^𝑀))
91 swrd0fvOLD 13727 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋)) ∧ (𝑖 + 1) ∈ (0..^𝑀)) → ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)) = (𝑋‘(𝑖 + 1)))
9225, 71, 90, 91syl3anc 1496 . . . . . . . . . . . . . . . 16 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)) = (𝑋‘(𝑖 + 1)))
9392eqcomd 2830 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑋‘(𝑖 + 1)) = ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)))
9481, 93preq12d 4493 . . . . . . . . . . . . . 14 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → {(𝑋𝑖), (𝑋‘(𝑖 + 1))} = {((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))})
9594eleq1d 2890 . . . . . . . . . . . . 13 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ({(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9695ralbidva 3193 . . . . . . . . . . . 12 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9723, 96sylibd 231 . . . . . . . . . . 11 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9897impancom 445 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9998imp 397 . . . . . . . . 9 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
10024, 70jca 509 . . . . . . . . . . . . . 14 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))))
101100adantlr 708 . . . . . . . . . . . . 13 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))))
102 swrd0lenOLD 13707 . . . . . . . . . . . . 13 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
103101, 102syl 17 . . . . . . . . . . . 12 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
104103oveq1d 6919 . . . . . . . . . . 11 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1) = (𝑀 − 1))
105104oveq2d 6920 . . . . . . . . . 10 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)) = (0..^(𝑀 − 1)))
106105raleqdv 3355 . . . . . . . . 9 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
10799, 106mpbird 249 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
10824, 70, 102syl2anc 581 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
10985eqcomd 2830 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 = ((𝑀 − 1) + 1))
110109ad2antrl 721 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 = ((𝑀 − 1) + 1))
111108, 110eqtrd 2860 . . . . . . . . 9 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))
112111adantlr 708 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))
1136, 107, 1123jca 1164 . . . . . . 7 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1)))
114113ex 403 . . . . . 6 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
1151143adant3 1168 . . . . 5 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑋), (𝑋‘0)} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
1163, 115syl 17 . . . 4 (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
117116impcom 398 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1)))
118 nnm1nn0 11660 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
119118ad2antrr 719 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑀 − 1) ∈ ℕ0)
1201, 2iswwlksnx 27138 . . . 4 ((𝑀 − 1) ∈ ℕ0 → ((𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺) ↔ ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
121119, 120syl 17 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺) ↔ ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
122117, 121mpbird 249 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺))
123122ex 403 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3116  wss 3797  {cpr 4398  cop 4402   class class class wbr 4872  cfv 6122  (class class class)co 6904  cc 10249  cr 10250  0cc0 10251  1c1 10252   + caddc 10254  cle 10391  cmin 10584  cn 11349  0cn0 11617  cz 11703  cuz 11967  ...cfz 12618  ..^cfzo 12759  chash 13409  Word cword 13573  lastSclsw 13621   substr csubstr 13699  Vtxcvtx 26293  Edgcedg 26344   WWalksN cwwlksn 27124   ClWWalksN cclwwlkn 27361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-map 8123  df-pm 8124  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-card 9077  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-n0 11618  df-xnn0 11690  df-z 11704  df-uz 11968  df-fz 12619  df-fzo 12760  df-hash 13410  df-word 13574  df-substr 13700  df-wwlks 27128  df-wwlksn 27129  df-clwwlk 27310  df-clwwlkn 27363
This theorem is referenced by:  numclwlk2lem2fOLD  27782  numclwlk2lem2fOLDOLD  27790
  Copyright terms: Public domain W3C validator