![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsc | Structured version Visualization version GIF version |
Description: A short expression for the pair function mapping 0 to 𝐴 and 1 to 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
xpsc | ⊢ ◡({𝐴} +𝑐 {𝐵}) = (({∅} × {𝐴}) ∪ ({1𝑜} × {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5097 | . . . 4 ⊢ {𝐴} ∈ V | |
2 | snex 5097 | . . . 4 ⊢ {𝐵} ∈ V | |
3 | cdaval 9278 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} +𝑐 {𝐵}) = (({𝐴} × {∅}) ∪ ({𝐵} × {1𝑜}))) | |
4 | 1, 2, 3 | mp2an 684 | . . 3 ⊢ ({𝐴} +𝑐 {𝐵}) = (({𝐴} × {∅}) ∪ ({𝐵} × {1𝑜})) |
5 | 4 | cnveqi 5498 | . 2 ⊢ ◡({𝐴} +𝑐 {𝐵}) = ◡(({𝐴} × {∅}) ∪ ({𝐵} × {1𝑜})) |
6 | cnvun 5753 | . 2 ⊢ ◡(({𝐴} × {∅}) ∪ ({𝐵} × {1𝑜})) = (◡({𝐴} × {∅}) ∪ ◡({𝐵} × {1𝑜})) | |
7 | cnvxp 5766 | . . 3 ⊢ ◡({𝐴} × {∅}) = ({∅} × {𝐴}) | |
8 | cnvxp 5766 | . . 3 ⊢ ◡({𝐵} × {1𝑜}) = ({1𝑜} × {𝐵}) | |
9 | 7, 8 | uneq12i 3961 | . 2 ⊢ (◡({𝐴} × {∅}) ∪ ◡({𝐵} × {1𝑜})) = (({∅} × {𝐴}) ∪ ({1𝑜} × {𝐵})) |
10 | 5, 6, 9 | 3eqtri 2823 | 1 ⊢ ◡({𝐴} +𝑐 {𝐵}) = (({∅} × {𝐴}) ∪ ({1𝑜} × {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 Vcvv 3383 ∪ cun 3765 ∅c0 4113 {csn 4366 × cxp 5308 ◡ccnv 5309 (class class class)co 6876 1𝑜c1o 7790 +𝑐 ccda 9275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-iota 6062 df-fun 6101 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-cda 9276 |
This theorem is referenced by: xpscg 16529 xpsc0 16531 xpsc1 16532 xpsfrnel2 16536 |
Copyright terms: Public domain | W3C validator |