![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpscfv | Structured version Visualization version GIF version |
Description: The value of the pair function at an element of 2𝑜. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
xpscfv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 2𝑜) → (◡({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4388 | . . . 4 ⊢ (𝐶 ∈ {∅, 1𝑜} → (𝐶 = ∅ ∨ 𝐶 = 1𝑜)) | |
2 | df2o3 7811 | . . . 4 ⊢ 2𝑜 = {∅, 1𝑜} | |
3 | 1, 2 | eleq2s 2894 | . . 3 ⊢ (𝐶 ∈ 2𝑜 → (𝐶 = ∅ ∨ 𝐶 = 1𝑜)) |
4 | xpsc0 16532 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (◡({𝐴} +𝑐 {𝐵})‘∅) = 𝐴) | |
5 | 4 | adantr 473 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (◡({𝐴} +𝑐 {𝐵})‘∅) = 𝐴) |
6 | fveq2 6409 | . . . . . 6 ⊢ (𝐶 = ∅ → (◡({𝐴} +𝑐 {𝐵})‘𝐶) = (◡({𝐴} +𝑐 {𝐵})‘∅)) | |
7 | iftrue 4281 | . . . . . 6 ⊢ (𝐶 = ∅ → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐴) | |
8 | 6, 7 | eqeq12d 2812 | . . . . 5 ⊢ (𝐶 = ∅ → ((◡({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵) ↔ (◡({𝐴} +𝑐 {𝐵})‘∅) = 𝐴)) |
9 | 5, 8 | syl5ibrcom 239 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 = ∅ → (◡({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))) |
10 | xpsc1 16533 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (◡({𝐴} +𝑐 {𝐵})‘1𝑜) = 𝐵) | |
11 | 10 | adantl 474 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (◡({𝐴} +𝑐 {𝐵})‘1𝑜) = 𝐵) |
12 | fveq2 6409 | . . . . . 6 ⊢ (𝐶 = 1𝑜 → (◡({𝐴} +𝑐 {𝐵})‘𝐶) = (◡({𝐴} +𝑐 {𝐵})‘1𝑜)) | |
13 | 1n0 7813 | . . . . . . . 8 ⊢ 1𝑜 ≠ ∅ | |
14 | neeq1 3031 | . . . . . . . 8 ⊢ (𝐶 = 1𝑜 → (𝐶 ≠ ∅ ↔ 1𝑜 ≠ ∅)) | |
15 | 13, 14 | mpbiri 250 | . . . . . . 7 ⊢ (𝐶 = 1𝑜 → 𝐶 ≠ ∅) |
16 | ifnefalse 4287 | . . . . . . 7 ⊢ (𝐶 ≠ ∅ → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐵) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝐶 = 1𝑜 → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐵) |
18 | 12, 17 | eqeq12d 2812 | . . . . 5 ⊢ (𝐶 = 1𝑜 → ((◡({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵) ↔ (◡({𝐴} +𝑐 {𝐵})‘1𝑜) = 𝐵)) |
19 | 11, 18 | syl5ibrcom 239 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 = 1𝑜 → (◡({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))) |
20 | 9, 19 | jaod 886 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐶 = ∅ ∨ 𝐶 = 1𝑜) → (◡({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))) |
21 | 3, 20 | syl5 34 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ 2𝑜 → (◡({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))) |
22 | 21 | 3impia 1146 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 2𝑜) → (◡({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∨ wo 874 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 ∅c0 4113 ifcif 4275 {csn 4366 {cpr 4368 ◡ccnv 5309 ‘cfv 6099 (class class class)co 6876 1𝑜c1o 7790 2𝑜c2o 7791 +𝑐 ccda 9275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-ord 5942 df-on 5943 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1o 7797 df-2o 7798 df-cda 9276 |
This theorem is referenced by: xpsfrn2 16542 xpslem 16545 xpsaddlem 16547 xpsvsca 16551 |
Copyright terms: Public domain | W3C validator |