![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsfrn2 | Structured version Visualization version GIF version |
Description: A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) |
Ref | Expression |
---|---|
xpsfrn2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran 𝐹 = X𝑘 ∈ 2𝑜 (◡({𝐴} +𝑐 {𝐵})‘𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpscfv 16534 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑘 ∈ 2𝑜) → (◡({𝐴} +𝑐 {𝐵})‘𝑘) = if(𝑘 = ∅, 𝐴, 𝐵)) | |
2 | 1 | 3expa 1148 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑘 ∈ 2𝑜) → (◡({𝐴} +𝑐 {𝐵})‘𝑘) = if(𝑘 = ∅, 𝐴, 𝐵)) |
3 | 2 | ixpeq2dva 8161 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑘 ∈ 2𝑜 (◡({𝐴} +𝑐 {𝐵})‘𝑘) = X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)) |
4 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) | |
5 | 4 | xpsfrn 16541 | . 2 ⊢ ran 𝐹 = X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) |
6 | 3, 5 | syl6reqr 2850 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran 𝐹 = X𝑘 ∈ 2𝑜 (◡({𝐴} +𝑐 {𝐵})‘𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∅c0 4113 ifcif 4275 {csn 4366 ◡ccnv 5309 ran crn 5311 ‘cfv 6099 (class class class)co 6876 ↦ cmpt2 6878 2𝑜c2o 7791 Xcixp 8146 +𝑐 ccda 9275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-2o 7798 df-oadd 7801 df-er 7980 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-cda 9276 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |