![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpslem | Structured version Visualization version GIF version |
Description: The indexed structure product that appears in xpsval 16618 has the same base as the target of the function 𝐹. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsval.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsval.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsval.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsval.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
xpsval.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
xpsval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) |
xpsval.k | ⊢ 𝐺 = (Scalar‘𝑅) |
xpsval.u | ⊢ 𝑈 = (𝐺Xs◡({𝑅} +𝑐 {𝑆})) |
Ref | Expression |
---|---|
xpslem | ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsval.u | . . 3 ⊢ 𝑈 = (𝐺Xs◡({𝑅} +𝑐 {𝑆})) | |
2 | eqid 2778 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
3 | xpsval.k | . . . . 5 ⊢ 𝐺 = (Scalar‘𝑅) | |
4 | 3 | fvexi 6460 | . . . 4 ⊢ 𝐺 ∈ V |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
6 | 2on 7852 | . . . 4 ⊢ 2o ∈ On | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2o ∈ On) |
8 | xpsval.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
9 | xpsval.2 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
10 | xpscfn 16605 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ◡({𝑅} +𝑐 {𝑆}) Fn 2o) | |
11 | 8, 9, 10 | syl2anc 579 | . . 3 ⊢ (𝜑 → ◡({𝑅} +𝑐 {𝑆}) Fn 2o) |
12 | 1, 2, 5, 7, 11 | prdsbas2 16515 | . 2 ⊢ (𝜑 → (Base‘𝑈) = X𝑘 ∈ 2o (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘))) |
13 | xpscfv 16608 | . . . . . . . . 9 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑘 ∈ 2o) → (◡({𝑅} +𝑐 {𝑆})‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)) | |
14 | 13 | 3expia 1111 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑘 ∈ 2o → (◡({𝑅} +𝑐 {𝑆})‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))) |
15 | 8, 9, 14 | syl2anc 579 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 2o → (◡({𝑅} +𝑐 {𝑆})‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))) |
16 | 15 | imp 397 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → (◡({𝑅} +𝑐 {𝑆})‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)) |
17 | 16 | fveq2d 6450 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆))) |
18 | xpsval.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝑅) | |
19 | xpsval.y | . . . . . . 7 ⊢ 𝑌 = (Base‘𝑆) | |
20 | ifeq12 4324 | . . . . . . 7 ⊢ ((𝑋 = (Base‘𝑅) ∧ 𝑌 = (Base‘𝑆)) → if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆))) | |
21 | 18, 19, 20 | mp2an 682 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆)) |
22 | fvif 6462 | . . . . . 6 ⊢ (Base‘if(𝑘 = ∅, 𝑅, 𝑆)) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆)) | |
23 | 21, 22 | eqtr4i 2805 | . . . . 5 ⊢ if(𝑘 = ∅, 𝑋, 𝑌) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆)) |
24 | 17, 23 | syl6eqr 2832 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = if(𝑘 = ∅, 𝑋, 𝑌)) |
25 | 24 | ixpeq2dva 8209 | . . 3 ⊢ (𝜑 → X𝑘 ∈ 2o (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌)) |
26 | xpsval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) | |
27 | 26 | xpsfrn 16615 | . . 3 ⊢ ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌) |
28 | 25, 27 | syl6eqr 2832 | . 2 ⊢ (𝜑 → X𝑘 ∈ 2o (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = ran 𝐹) |
29 | 12, 28 | eqtr2d 2815 | 1 ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ∅c0 4141 ifcif 4307 {csn 4398 ◡ccnv 5354 ran crn 5356 Oncon0 5976 Fn wfn 6130 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 2oc2o 7837 Xcixp 8194 +𝑐 ccda 9324 Basecbs 16255 Scalarcsca 16341 Xscprds 16492 ×s cxps 16552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-fz 12644 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-hom 16362 df-cco 16363 df-prds 16494 |
This theorem is referenced by: xpsbas 16620 xpsaddlem 16621 xpsadd 16622 xpsmul 16623 xpssca 16624 xpsvsca 16625 xpsless 16626 xpsle 16627 xpsmnd 17716 xpsgrp 17921 xpstps 22022 xpstopnlem2 22023 xpsdsfn 22590 xpsxmetlem 22592 xpsxmet 22593 xpsdsval 22594 xpsmet 22595 xpsxms 22747 xpsms 22748 |
Copyright terms: Public domain | W3C validator |