![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0tmdOLD | Structured version Visualization version GIF version |
Description: The extended nonnegative real numbers monoid is a topological monoid. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
xrge0tmdOLD | ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0cmn 20110 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
2 | cmnmnd 18523 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
4 | xrge0tps 30504 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
5 | eqeq1 2803 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 = 0 ↔ 𝑥 = 0)) | |
6 | fveq2 6411 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (log‘𝑦) = (log‘𝑥)) | |
7 | 6 | negeqd 10566 | . . . . 5 ⊢ (𝑦 = 𝑥 → -(log‘𝑦) = -(log‘𝑥)) |
8 | 5, 7 | ifbieq2d 4302 | . . . 4 ⊢ (𝑦 = 𝑥 → if(𝑦 = 0, +∞, -(log‘𝑦)) = if(𝑥 = 0, +∞, -(log‘𝑥))) |
9 | 8 | cbvmptv 4943 | . . 3 ⊢ (𝑦 ∈ (0[,]1) ↦ if(𝑦 = 0, +∞, -(log‘𝑦))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
10 | eqid 2799 | . . 3 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
11 | eqid 2799 | . . 3 ⊢ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) | |
12 | 9, 10, 11 | xrge0pluscn 30502 | . 2 ⊢ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ∈ ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ×t ((ordTop‘ ≤ ) ↾t (0[,]+∞))) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))) |
13 | xrsbas 20084 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
14 | eqid 2799 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
15 | xrsadd 20085 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
16 | xaddf 12304 | . . . . . 6 ⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | |
17 | ffn 6256 | . . . . . 6 ⊢ ( +𝑒 :(ℝ* × ℝ*)⟶ℝ* → +𝑒 Fn (ℝ* × ℝ*)) | |
18 | 16, 17 | ax-mp 5 | . . . . 5 ⊢ +𝑒 Fn (ℝ* × ℝ*) |
19 | iccssxr 12505 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
20 | 13, 14, 15, 18, 19 | ressplusf 30166 | . . . 4 ⊢ (+𝑓‘(ℝ*𝑠 ↾s (0[,]+∞))) = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) |
21 | 20 | eqcomi 2808 | . . 3 ⊢ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) = (+𝑓‘(ℝ*𝑠 ↾s (0[,]+∞))) |
22 | xrge0base 30201 | . . . 4 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
23 | ovex 6910 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
24 | xrstset 20087 | . . . . . 6 ⊢ (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠) | |
25 | 14, 24 | resstset 16367 | . . . . 5 ⊢ ((0[,]+∞) ∈ V → (ordTop‘ ≤ ) = (TopSet‘(ℝ*𝑠 ↾s (0[,]+∞)))) |
26 | 23, 25 | ax-mp 5 | . . . 4 ⊢ (ordTop‘ ≤ ) = (TopSet‘(ℝ*𝑠 ↾s (0[,]+∞))) |
27 | 22, 26 | topnval 16410 | . . 3 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
28 | 21, 27 | istmd 22206 | . 2 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd ↔ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp ∧ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ∈ ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ×t ((ordTop‘ ≤ ) ↾t (0[,]+∞))) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))) |
29 | 3, 4, 12, 28 | mpbir3an 1442 | 1 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 Vcvv 3385 ifcif 4277 ↦ cmpt 4922 × cxp 5310 ↾ cres 5314 Fn wfn 6096 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 0cc0 10224 1c1 10225 +∞cpnf 10360 ℝ*cxr 10362 ≤ cle 10364 -cneg 10557 +𝑒 cxad 12191 [,]cicc 12427 ↾s cress 16185 TopSetcts 16273 ↾t crest 16396 ordTopcordt 16474 ℝ*𝑠cxrs 16475 +𝑓cplusf 17554 Mndcmnd 17609 CMndccmn 18508 TopSpctps 21065 Cn ccn 21357 ×t ctx 21692 TopMndctmd 22202 logclog 24642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ioc 12429 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-mod 12924 df-seq 13056 df-exp 13115 df-fac 13314 df-bc 13343 df-hash 13371 df-shft 14148 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-limsup 14543 df-clim 14560 df-rlim 14561 df-sum 14758 df-ef 15134 df-sin 15136 df-cos 15137 df-pi 15139 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-hom 16291 df-cco 16292 df-rest 16398 df-topn 16399 df-0g 16417 df-gsum 16418 df-topgen 16419 df-pt 16420 df-prds 16423 df-ordt 16476 df-xrs 16477 df-qtop 16482 df-imas 16483 df-xps 16485 df-mre 16561 df-mrc 16562 df-acs 16564 df-ps 17515 df-tsr 17516 df-plusf 17556 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mulg 17857 df-subg 17904 df-cntz 18062 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-cring 18866 df-subrg 19096 df-abv 19135 df-lmod 19183 df-scaf 19184 df-sra 19495 df-rgmod 19496 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-fbas 20065 df-fg 20066 df-cnfld 20069 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 df-cld 21152 df-ntr 21153 df-cls 21154 df-nei 21231 df-lp 21269 df-perf 21270 df-cn 21360 df-cnp 21361 df-haus 21448 df-tx 21694 df-hmeo 21887 df-fil 21978 df-fm 22070 df-flim 22071 df-flf 22072 df-tmd 22204 df-tgp 22205 df-trg 22291 df-xms 22453 df-ms 22454 df-tms 22455 df-nm 22715 df-ngp 22716 df-nrg 22718 df-nlm 22719 df-ii 23008 df-cncf 23009 df-limc 23971 df-dv 23972 df-log 24644 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |