![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znnenlemOLD | Structured version Visualization version GIF version |
Description: Obsolete as of 6-Sep-2022. Used to be a lemma for znnen 15322. (Contributed by NM, 31-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
znnenlemOLD | ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11715 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | zre 11715 | . . . . 5 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℝ) | |
3 | 0re 10365 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
4 | ltnle 10443 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) | |
5 | 3, 4 | mpan2 682 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℝ → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) |
6 | 5 | adantr 474 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) |
7 | 6 | anbi1d 623 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) ↔ (¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥))) |
8 | ltletr 10455 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) | |
9 | 3, 8 | mp3an2 1577 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
10 | 7, 9 | sylbird 252 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
11 | 10 | ancoms 452 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
12 | 11 | ancomsd 459 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑦 < 𝑥)) |
13 | ltne 10460 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑥) → 𝑥 ≠ 𝑦) | |
14 | 13 | ex 403 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
15 | 14 | adantl 475 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
16 | 12, 15 | syld 47 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑥 ≠ 𝑦)) |
17 | 1, 2, 16 | syl2an 589 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑥 ≠ 𝑦)) |
18 | 17 | impcom 398 | . . 3 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ≠ 𝑦) |
19 | znegcl 11747 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
20 | zneo 11795 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ -𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · -𝑦) + 1)) | |
21 | 19, 20 | sylan2 586 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · -𝑦) + 1)) |
22 | 2cn 11433 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
23 | zcn 11716 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
24 | mulneg12 10799 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-2 · 𝑦) = (2 · -𝑦)) | |
25 | 22, 23, 24 | sylancr 581 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → (-2 · 𝑦) = (2 · -𝑦)) |
26 | 25 | adantl 475 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-2 · 𝑦) = (2 · -𝑦)) |
27 | 26 | oveq1d 6925 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((-2 · 𝑦) + 1) = ((2 · -𝑦) + 1)) |
28 | 21, 27 | neeqtrrd 3073 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((-2 · 𝑦) + 1)) |
29 | 28 | adantl 475 | . . 3 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (2 · 𝑥) ≠ ((-2 · 𝑦) + 1)) |
30 | 18, 29 | 2thd 257 | . 2 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 ≠ 𝑦 ↔ (2 · 𝑥) ≠ ((-2 · 𝑦) + 1))) |
31 | 30 | necon4bid 3044 | 1 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 class class class wbr 4875 (class class class)co 6910 ℂcc 10257 ℝcr 10258 0cc0 10259 1c1 10260 + caddc 10262 · cmul 10264 < clt 10398 ≤ cle 10399 -cneg 10593 2c2 11413 ℤcz 11711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-n0 11626 df-z 11712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |