Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zqOLD Structured version   Visualization version   GIF version

Theorem zqOLD 12163
 Description: Obsolete version of zq 12162 as of 23-Mar-2023. An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
zqOLD (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)

Proof of Theorem zqOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 11792 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
21div1d 11203 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 / 1) = 𝑥)
32eqeq2d 2782 . . . . 5 (𝑥 ∈ ℤ → (𝐴 = (𝑥 / 1) ↔ 𝐴 = 𝑥))
4 eqcom 2779 . . . . 5 (𝑥 = 𝐴𝐴 = 𝑥)
53, 4syl6rbbr 282 . . . 4 (𝑥 ∈ ℤ → (𝑥 = 𝐴𝐴 = (𝑥 / 1)))
6 1nn 11446 . . . . 5 1 ∈ ℕ
7 oveq2 6978 . . . . . 6 (𝑦 = 1 → (𝑥 / 𝑦) = (𝑥 / 1))
87rspceeqv 3547 . . . . 5 ((1 ∈ ℕ ∧ 𝐴 = (𝑥 / 1)) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
96, 8mpan 677 . . . 4 (𝐴 = (𝑥 / 1) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
105, 9syl6bi 245 . . 3 (𝑥 ∈ ℤ → (𝑥 = 𝐴 → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
1110reximia 3183 . 2 (∃𝑥 ∈ ℤ 𝑥 = 𝐴 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
12 risset 3207 . 2 (𝐴 ∈ ℤ ↔ ∃𝑥 ∈ ℤ 𝑥 = 𝐴)
13 elq 12158 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
1411, 12, 133imtr4i 284 1 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1507   ∈ wcel 2050  ∃wrex 3083  (class class class)co 6970  1c1 10330   / cdiv 11092  ℕcn 11433  ℤcz 11787  ℚcq 12156 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-z 11788  df-q 12157 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator