![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zqOLD | Structured version Visualization version GIF version |
Description: Obsolete version of zq 12162 as of 23-Mar-2023. An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
zqOLD | ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 11792 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | div1d 11203 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 / 1) = 𝑥) |
3 | 2 | eqeq2d 2782 | . . . . 5 ⊢ (𝑥 ∈ ℤ → (𝐴 = (𝑥 / 1) ↔ 𝐴 = 𝑥)) |
4 | eqcom 2779 | . . . . 5 ⊢ (𝑥 = 𝐴 ↔ 𝐴 = 𝑥) | |
5 | 3, 4 | syl6rbbr 282 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 = 𝐴 ↔ 𝐴 = (𝑥 / 1))) |
6 | 1nn 11446 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | oveq2 6978 | . . . . . 6 ⊢ (𝑦 = 1 → (𝑥 / 𝑦) = (𝑥 / 1)) | |
8 | 7 | rspceeqv 3547 | . . . . 5 ⊢ ((1 ∈ ℕ ∧ 𝐴 = (𝑥 / 1)) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
9 | 6, 8 | mpan 677 | . . . 4 ⊢ (𝐴 = (𝑥 / 1) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
10 | 5, 9 | syl6bi 245 | . . 3 ⊢ (𝑥 ∈ ℤ → (𝑥 = 𝐴 → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))) |
11 | 10 | reximia 3183 | . 2 ⊢ (∃𝑥 ∈ ℤ 𝑥 = 𝐴 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
12 | risset 3207 | . 2 ⊢ (𝐴 ∈ ℤ ↔ ∃𝑥 ∈ ℤ 𝑥 = 𝐴) | |
13 | elq 12158 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
14 | 11, 12, 13 | 3imtr4i 284 | 1 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ∃wrex 3083 (class class class)co 6970 1c1 10330 / cdiv 11092 ℕcn 11433 ℤcz 11787 ℚcq 12156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-nn 11434 df-z 11788 df-q 12157 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |