
Bourbaki Proof Checker

Juha Arpiainen

December 20, 2006

1

Contents

1 Introduction 4

1.1 Quick start . 4
1.2 Note on definitions . 5

2 Symbols and Formulae 5

2.1 Symbol kinds . 5
2.2 Primitive symbols . 6
2.3 Symbol trees . 7
2.4 Symtree functions . 7

3 Theorems and Proofs 8

3.1 Verifying proofs . 10
3.2 Distinct variables . 10
3.3 Local variables . 11
3.4 Statistics . 11

4 Definitions 12

4.1 Soundness of definitions . 13
4.2 Bound Variables . 14
4.3 Sample Definitions . 14

5 The Context System 15

5.1 Meta information . 17
5.2 Nested variables and hypotheses 18
5.3 Context functions . 19

6 Symbol References 20

6.1 Terminology . 20
6.2 Composing References . 21
6.3 The Parser . 22

6.3.1 Examples . 22
6.3.2 Bracket syntax . 22

6.4 Importing and Exporting . 23
6.5 Importing and exporting with proofs 26
6.6 Seeking symbols . 27
6.7 Aliases . 28

2

7 Modules and Files 28

7.1 Require . 30
7.2 Providing . 31
7.3 Writing re-usable modules . 33

8 Structured Proofs 33

8.1 Verifying structured proofs . 34
8.2 Parsing proofs . 35
8.3 Seeking theorems . 36
8.4 Pattern trees . 36

9 Metasymbols 36

9.1 Resolving name clashes . 37
9.2 Working with proofs . 38
9.3 Virtual namespaces . 39

3

1 Introduction

Bourbaki is a program for writing and verifying formal mathematical proofs.
It is inspired mainly by Norman Megill’s Metamath1 and the related programs
Ghilbert2 by Raph Levien and Mmj23 by Mel O’Cat, but aims on providing
more powerful syntax and tools for automated proof writing.

Nicolas Bourbaki is the pseudonym of a group of mathematicians, who
have written a rigorous multi-volume treatise of Mathematics emphasizing
the concept of mathematical structures.[1] My long-term goal with Bourbaki
is an online hyperlinked, computer-verified encyclopedia of Mathematics, per-
haps in conjunction with the Hyperreal Dictionary of Mathematics project.4

Bourbaki is implemented as an embedded language on top of ANSI Com-
mon Lisp. This means most Lisp features are available for the user; in
particular, it is possible to write Lisp functions that construct proofs (See
section 9).

The code of Bourbaki is roughly divided in two levels. The symbol level

code implements a simple proof system. The reference level code provides a
hierarchical namespace system to organize the mathematical content. These
terms refer to the principal data types used on the respective levels.

Sections 2 to 4 of this document describe the symbol level part of Bour-
baki. The reference level code is described in sections 5 to 7. More advanced,
programmable features are described in sections 8 and 9.

1.1 Quick start

Extract the archive :

$ tar xzvf bourbaki .tar.gz

$ cd bourbaki

Start Lisp:

$ clisp

Load Bourbaki :

1http://www.metamath.org
2http://ghilbert.org
3http://planetx.cc.vt.edu/AsteroidMeta/mmj2
4http://planetx.cc.vt.edu/AsteroidMeta/HDM

4

> (load "init")

> (in-package bourbaki-user)

Load and verify the propositional calculus module:

> (verify !!prop)

1.2 Note on definitions

We refer to the Common Lisp specification[2] for definitions of terms such as
form (anything that can be evaluated by Lisp) and string.

New terms will be defined in BNF syntax. For example,

strings := string | (string*)

defines strings to be either a string or a list of strings.

2 Symbols and Formulae

Mathematical expressions are treated as trees of symbols in Bourbaki. Thus
the expression 2(a+ b) is stored internally as (∗s (2s) (+s (as) (bs))),
where the ∗s, 2s, . . . are Lisp objects corresponding to the multiplication op-
erator, the number 2, etc.

One usually calls the function symtree-parse to create such expressions.
Calls to symtree-parse are abbreviated with the [] syntax: evaluating
the form [* 2 + a b] would construct the above tree, assuming that the
symbols have been properly declared before. In this document we will some-
times use the [] notation to denote the resulting symtree, although this is
technically incorrect.

Note that we are using the so-called Polish prefix notation, where paren-
theses can be omitted if each operator takes a fixed number of arguments
(which is usually the case in Bourbaki).

2.1 Symbol kinds

Each expression in Bourbaki has a syntactic type or kind. For example,
expressions of first order logic are variables, terms or well formed formulae

(wffs). Usually one type (the wff) is special in that all propositions of the
system have this type. The definition feature (section 4) implicitly assumes
a wff type, otherwise the wff type is not treated specially.

5

Syntactic types are declared with the macro symkind, for example,

(symkind "WFF")

A syntactic type may be declared a subtype of another type by giving
the :super keyword to symkind. For example, the line

(symkind "VAR" :super term)

says that any variable is also a term. Note that the symkind names should
be in upper case due to the way Lisp treats symbol names.

The function (subkindp x y) returns true if x and y are the same type
or if x is a subtype of y. An expression e can be substituted for a variable v
if (subkindp (type of e) (type of v)) is true. If this is the case we say
e is of correct type for v.

2.2 Primitive symbols

Primitive symbols are declared with macro prim:

prim-form := (prim symkind name (varspec) body)

name := string

varspec := { typespec strings }*

typespec := symkind | (:bound symkind)

body := form*

For example, the declaration

(prim wff "=" (term "x" term "y"))

states that [= x y] is a wff for any two terms x and y. Here x and y are the
variables of the symbol =. The number of variables is called the arity of the
symbol.

Several variables of the same kind can be declared by putting their names
in a list:

(prim wff "=" (term ("x" "y")))

would have worked as well. Bourbaki defines a reader macro ‘![’ for abbre-
viating lists of strings:

(prim wff "=" (term ![x y]))

is equivalent to both of the above declarations.

6

The names of symbols and their variables are case-sensitive. The symbols
are stored in a namespace separate from Lisp symbols. A reference to the
symbol can be obtained using the ‘!’ reader macro: != returns a reference to
the equality symbol just defined. Inside brackets the use of ’!’ is optional:
[= a b] or [!= !a !b].

It is possible to redefine a symbol: the new declaration replaces the orig-
inal. References to the old symbol are not updated automatically, however.
The old and the new symbol are never the same in the sense of eq even if they
have the same arity and variables of the same types. This feature should be
used only while ‘debugging’ proofs interactively. Identically named symbols
would typically cause exportion to other proof systems to fail.

2.3 Symbol trees

A symbol tree, or symtree for short, is a list (op arg1 arg2 . . . argn) such
that op is a Bourbaki symbol and each argi is a symtree. op is called the
operator of the tree and the argi are arguments. The leaves of the tree are
symbols with no arguments (n = 0 is allowed in the definition).

Patterns of symtrees are represented with symtree-like objects that have
integers or Lisp symbols in place of some of the subtrees, standing for un-
specified symtrees. Note that a lone integer or symbol is not a valid symtree
pattern.

The type of a symtree (op arg1 . . . argn) is the symbol kind of op.
The tree is well formed if the arity of op is n and each argi is well formed
and of correct type for the corresponding variable of op. In this document
the term wff is used for any well-formed symtree.

Later on we will use ”generalized” symtrees that have theorems or other
Bourbaki objects as operators (in place of Bourbaki symbols). Most of this
section is valid for the generalized symtrees also, and we will call them simply
symtrees. The type of a generalized symtree is nil if the operator is not a
Bourbaki symbol.

2.4 Symtree functions

The well-formedness of a symtree can be tested with the function wffp.
Two symtrees can be compared with wff-equal. (wff-equal x y) re-

turns true if x and y have isomorphic tree structure and the corresponding
symbols are eq.

7

wff-type returns the type of a symtree.
A common operation is to simultaneously substitute all occurrences of a

number of symbols in a symtree with some other symtrees. This operation
is performed by replace-vars, a function taking the symtree and a list of
pairs (symi . substi) called the substitution map or smap in the code.

The result of substituting symi with substi in the symtree tr is denoted
by tr(sym1/subst1, . . . , symn/substn) or tr(subst1, . . . , substn) if the symi

are clear from context.
(print-symtree tree stream) prints the tree using the bracket nota-

tion. The default value of stream is *standard-output*.

3 Theorems and Proofs

Theorems and axioms in Bourbaki have zero or more variables, hypotheses

and assertions. In addition a theorem must have a proof. The variables
are Bourbaki symbols of arity zero; the hypotheses and assertions are wffs,
usually containing the variables. In the simple case the proof is a sequence
of theorem references justifying the assertions (see section 8 for the general
case).

The theorem is treated as a transformation rule: when its hypotheses are
satisfied for some symtrees substituted for its variables, its (correspondingly
substituted) assertions can be used to prove other theorems.

Theorems are defined using the macros th, hypo, ass, and proof:

theorem-form := (th name varspec body)

hypothesis-form := (hypo symtree *)

assertion-form := (ass symtree *)

proof-form := (proof proof-line *)

proof-line := symtree

Axioms are defined like theorems, but using ax instead of th:

axiom-form := (ax name varspec body)

Listing 1 contains an example from propositional calculus.

Listing 1: Beginnings of propositional calculus

;; File example1 .lisp

(symkind "WFF")

8

;; the implication symbol

(prim wff "->" (wff ![x y]))

;; the axioms

(ax "ax1" (wff ![A B])

(ass [-> A -> B A]))

(ax "ax2" (wff ![A B C])

(ass [-> -> A -> B C -> -> A B -> A C]))

;; modus ponens

(ax "ax-mp" (wff ![A B])

(hypo [A] [-> A B])

(ass [B]))

;; identity law for ’->’

;; see below for interpretation of the proof

;; compare with id1 in set.mm

(th "id" (wff "A")

(ass [-> A A])

(proof

[ax1 A [-> A A]]

[ax2 A [-> A A] A]

[ax-mp [-> A -> -> A A A]

[-> -> A -> A A -> A A]]

[ax1 A A]

[ax-mp [-> A -> A A] [-> A A]]))

As seen from this this example, the hypo (and ass) lines are optional.
Multiple hypothesis and assertions lines can be used:

(hypo [A])

(hypo [-> A B])

works as well for ax-mp. In contrast, each proof replaces the previous one.
Hypothesis and axiom lines can be freely mixed, and the order usually does
not matter. The proof should be after the hypotheses and assertions. Bour-
baki allows a proof expression for an axiom, although the proof won’t be
used anywhere.

Theorems and axioms live in the same namespace with symbols. The
rules concerning redefinition of symbols apply also to theorems.

9

A theorem’s variables, hypotheses, assertions and proof can be printed
with print-theorem.

3.1 Verifying proofs

The function verify checks the correctness of a theorem or axiom thr. The
(somewhat simplified) verification algorithm follows:

1. Check that the hypotheses and assertion of thr are well-formed.

2. If thr is an axiom, we are done. Otherwise initialize list L with the
hypotheses of thr.

3. For each proof line [ref subst1 . . . substn],

• Verify ref if it is not already verified.

• Check that the number of variables of ref is equal to the number n
of substitutions, and that each substi is well-formed and of correct
type.

• For each hypothesis h of ref , check that
h(var1/subst1, . . . , varn/substn) is in L,
where var1, . . . , varn are the variables of ref .

• For each assertion a of ref , insert
a(subst1, . . . , substn) into L.

4. Check that each assertion of thr is in L.

The verifier detects vicious circles (theorems referring to themselves or
cycles of theorem references).

3.2 Distinct variables

Sometimes the simple substitution rule of Bourbaki causes problems. Con-
sider for example the theorem ∀x∃y(x 6= y) of predicate calculus (which is
true assuming there are at least two objects). Simple substitution of z for
both x and y would result in the incorrect formula ∃z(z 6= z).

In the above theorem x and y should be marked distinct using the macro
dist:

10

(th "exists2 " (var ![x y])

(dist (!x !y))

(ass [∀ x ∃ y 6= x y])

(proof ...))

When two variables x and y are marked distict in a theorem, the substi-
tution of a for x and b for y is valid only if

• no variable occurs in both a and b, and

• each variable occurring in a is marked distinct from each variable in b.

(in case a and b are more complex expressions the name disjoint variable
condition might be more appropriate).

Lists of more than two variables can be given to dist. All variables in
the list are made pairwise distinct. The general form of dist is

distinct-form := (dist condition *)

condition := (variable *)

Distinct variable conditions are logically simpler than the concept of a
term being ‘free for’ a variable in a wff.[4] See the Metamath site [5] for
details and for an axiomatization of predicate logic using distinct variable
conditions.

3.3 Local variables

Sometimes it is necessary to use extra variables in a proof, in addition to
those used in hypotheses or assertions. Such ‘dummy’ or ‘local’ variables can
be defined with macro loc, for example (loc var "z").

local-form := (loc varspec)

Local variables are treated as distinct from each other and all the ‘normal’
variables.

3.4 Statistics

The function collect-stats walks through the proof of its argument the-
orem thr and calculates the following information for thr and (recursively)
the theorems referenced by thr:

• the axioms the theorem depends on

11

• definitions (see below) used in the proof, either directly or by a refer-
enced theorem

• number of proof steps if the proof were expanded to axioms

• list of theorems directly referencing this theorem.

The function show-stats prints the collected information.
Example:

Listing 2: Statistics

> (load "doc/example1 .lisp")

> (collect-stats !id)

> (show-stats !id)

Depends on axioms: ax-mp ax2 ax1

Uses definitions :

Is used by 0 theorems :

Total proof length: 5

> (show-stats !ax1)

Depends on axioms:

Uses definitions :

Is used by 1 theorem: id

Total proof length: 0

4 Definitions

Writing everything in terms of primitive symbols gets tedious quickly. New
symbols can be defined in terms of previous ones with the def macro.

define-form := (def def-name symkind sym-name

(sym-vars) (other-vars) rhs body)

def-name := string

sym-name := string

sym-vars := varspec

other-vars := varspec

rhs := symtree

This behaves as if a primitive symbol was declared with

(prim symkind sym-name (sym-vars))

12

together with an axiom

(ax def-name (sym-vars other-vars)

(ass [eq sym-name sym-vars rhs]))

The right-hand-side may contain only primitive and already defined sym-
bols, variables of the defined symbol, and auxiliary variables (the other-vars)
that must be bound (see section 4.2).

Here eq is the equality operator for the symbol kind of the defined symbol.
For example, the equality operator for wffs is the biconditional ‘↔’. The
equality operator would in this case be specified with

(set-symkind-eq-op wff !↔)

Trying to define a symbol of a type for which no equality operator is specified
is an error.

The equality operator should be of the ‘wff’ type and have exactly two
variables. Note that the equality operator of the wff type (the biconditional)
cannot be used to define itself; it must be a primitive symbol in Bourbaki.

4.1 Soundness of definitions

A definition is sound if

• each formula containing the defined symbol can be proved (using the
definition) to be equivalent to a formula without the symbol, and

• for each theorem proved using the definition, if its hypotheses and
assertions do not contain the defined symbol, there is a proof that does
not use the definition.

These conditions state that definition does not add anything new to the
language: it is just an abbreviation for a pattern of primitive symbols.

Definitions of the form [eq sym var1 . . . varn rhs] are provably sound
if they satisfy certain bound variable conditions (see below) and the equality
operator is an equivalence relation satisfying the substitution laws, that is,
the following formulae are theorems:

• [eq a a] (Reflexivity)

• [→ eq a b eq b a] (Symmetry)

• [→ ∧ eq a b eq b c eq a c] (Transitivity)

13

• [→ eq a b eq’ φ(x/a) φ(x/b)] for any wff φ(x). Here eq’ is the
equality operator for the type of φ; φ(x/a) denotes the formula where
a is properly substituted for x in φ(x).

Ensuring that these conditions hold for eq is a responsibility of the user.

4.2 Bound Variables

If the right-hand side of a definition uses auxiliary variables, they must be
bound in the sense that the value of rhs in the formal system does not depend
on what is substituted for the auxiliary variables. For example, x is bound
in ∃x(x > y) because ∃x(x > y) ↔ ∃z(z > y) for any variable z distinct
from y.

More formally, a symbol s with variables v1, . . . , vn binds vi if the formula

[eq [s a1 . . . ai−1 vi ai+1 . . . an]

[s a1(vi/ai) . . . ai−1(vi/ai) ai ai+1(vi/ai) . . . an(vi/ai)]]

is provable for any substitutions a1, . . . , an of correct type and ai distinct from
the other aj . In this case we say all occurrences of vi within [s a1 . . . ai−1 vi ai+1 . . . an]

are bound by s.
To declare that a symbol binds some of its variables, one can give an

additional :bound argument in the varspec of that symbol. For example,
the universal quantifier should properly be declared as

(prim wff "∀" ((: bound var) "x" wff "φ"))

The other-vars of a definition are implicitly marked :bound and distinct
from each other and the sym-vars.

Like the substitution law in the previous section, Bourbaki cannot gen-
erally verify the validity of a :bound declaration for a primitive symbol.
However, the following check is possible for a defined symbol:

A definition [eq sym var1 . . . varn rhs] is valid if for every vari marked
:bound (and all the auxiliary variables), all the potential occurrences of vari

are bound in rhs, that is, vari must be distinct from all variables that occur
free in the rhs.

This condition is checked by verify, otherwise definitions are treated like
axioms by the verifier.

4.3 Sample Definitions

14

Listing 3: Definitions

;; Conjunction

(def "df-and" wff "∧" (wff ![φ ψ]) ()

[¬ → φ ¬ ψ])

;; Existential quantification

(def "df-ex" wff "∃" ((: bound var) "x" wff "φ") ()

[¬ ∀ x ¬ φ])

;; Proper substitution . Theorem "sb7" in set.mm

;; [sb a x φ] is the wff where a is properly

;; substituted for x in φ.
(def "df-subst " wff "sb" (term "a" var "x" wff "φ") (var "y")

[∃ y ∧ = y a
[∃ x ∧ = x y φ]])

In the third example, x cannot be marked :bound. If the term substi-
tuted for a contains free occurrences of the variable substituted for x, those
occurrences are free in the rhs. If x were distinct from a, it could be marked
:bound.

5 The Context System

When writing mathematics, it is usual to omit information that is formally
necessary, but “clear from context”. For example, when speaking about
closed sets in a Hilbert space H , we mean closed with respect to the topology

induced by the metric induced by the norm induced by the inner product of

H .
A context in Bourbaki contains among other things bindings for the parser

that make it possible to parse [closed A] as

[closed A [topology-of metric-of norm-of inner-product H]],

for example. These bindings are established by importing and exporting

contexts (section 6.4).
In this section we describe the namespace hierarchy provided by the con-

texts: a context may contain symbols, theorems and subcontexts. At the
top of the hierarchy there is a root context, the value of *root-context*.
New symbols and theorems declared with prim, th and so on, are inserted
into the current context, the value of *current-context*. By default,

15

current-context is the same as *root-context*.
New contexts are created with macros module and local:

module-form := (module name body)

local-form := (local name body)

name := string

local creates a new subcontext of the current context and evaluates
the body expressions in this new context. module always creates a top-level

context, one that is a subcontext of the root contetx.
A sample context hierarchy follows.

Listing 4: Sample context hierarchy

;; File example2 .lisp

(module "logic"

(local "propositional"

(prim wff "→" (wff ![φ ψ])))
(local "predicate ")

(prim wff "∀" ((: bound var) "x" wff "φ")))
(module "set-theory "

(local "zfc"

(prim wff "∈" (set ![x y]))

(local "axioms"

(ax "union" ...)

(ax "choice" ...))))

Symbols and theorems are retrieved from the context hierarchy with the
function seek-sym, usually abbreviated with the reader macro ‘!’. Refer-
ences beginning with !/ are absolute (with respect to the root context),
other references are relative to the current context. In the sample hierarchy,
!/set-theory!zfc!axioms!union and !axioms!union refer to the same ax-
iom if !/set-theory!zfc is the current context. The macro in-context can
be used to bind *current-context*:

(in-context !/ set-theory !zfc!axioms

(ax "infinity " ...))

re-opens the axioms context to insert a new axiom.
The symbols and theorems in Bourbaki are actually treated as contexts,

and may themselves have subcontexts. For example, lemmas can be conve-
niently placed as subcontexts of the theorem they are used for:

16

(th "sample" (wff "X")

(th "lemma1" ...)

(th "lemma2" ...)

...)

The words symbol and context are used somewhat interchangeably in the
rest of this document.

The full name of a context is the list of names of the ancestors of that
context, for example, ("union""axioms""zfc" "set-theory") is the full
name of !/set-theory!zfc!axioms!union.

5.1 Meta information

Each context contains a table of meta information indexed by Lisp symbols.
Some fields are to be filled by the user, others by Bourbaki or other programs.
Meta information can be accessed with (gethash key (context-meta context))

The macro meta sets meta fields of the current context:

meta-form := (meta {key content }*)

key := symbol

content := form

Table 1 lists the fields reserved by the current version of Bourbaki. They
are all symbols in the keyword package.

Key Set by Description (reference)
:bound Symbol defining macros the :bound status of a variable
:comment user short description
:def def definition corresponding to a symbol
:defs-used collect-stats

:depends-on collect-stats axioms this theorem’s proof depends on
:description user longer textual description
:full-name create-context the full name of this context
:parent create-context parent context in the hierarchy
:proof-length collect-stats length of proof when expanded to axioms
:used-by collect-stats list of theorems using this one in a proof

Table 1: Meta keys used by Bourbaki

17

5.2 Nested variables and hypotheses

In mathematical theories it is common to have theorems with common vari-
ables and hypotheses. For example, theorems in the theory of topological
spaces would all have a variable X and a hypothesis [topo-space X]. Com-
mon variables and hypotheses can be moved to the parent context:

Listing 5: Topological spaces

(def wff "topo-space " (set "X") ...)

(theory "topology " (set "X")

(hypo [topo-space X])

;; closure of A in the topology of X

(def set "closure " (set "A") ...)

;; Theorem : closure is idempotent

(th "clos-idem " (set "A")

(ass [= [closure closure A] [closure A]])

(proof ...)))

The macro theory is just a version of local taking a varspec. When
used from outside of topology this behaves as the following were written
instead:

(local "topology "

(def set "closure " (set "X" set "A") ...)

(th "clos-idem " (set "X" set "Y")

(hypo [topo-space X])

...))

Within topology the space X is used by default when referring to other
theorems and definitions in topology

> (in-context !/ topology

(print-symtree [closure ∅]))
[closure X ∅]

This is a case of importing symbols, as defined in section 6.4. When vari-
ables from multiple levels are nested, the variables of the innermost context
are the rightmost ones.

18

Note that definitions, unlike axioms and theorems, do not inherit hy-
potheses from the parent context. This is to ensure the definition can always
be eliminated.

5.3 Context functions

New contexts are created with function create-context:

(create-context :name string :parent context

:type symkind :class symbol)

parent defaults to *current-context*; a nil parent creates a con-
text outside the hierarchy. class should be one of the symbols :axiom,
:definition, :theorem, :prim, :sym, :arg (a variable), :loc (a dummy
variable), :context, or :module.

create-context does not yet insert the new context to parent’s symbol
table, see insert-sym in section 6.

Usually create-context is not called directly, but context creating macros
such as th and prim are used instead. defcontext is the general form of
these macros:

defcontext-form := (defcontext class name (varspec) body)

Like create-context, defcontext does not insert to parent’s symbol table.
mkrootcontext creates an empty context without a parent, a suitable

value for *root-context*. flush sets *root-context* to a fresh root con-
text, usually sending the previous hierarchy to the garbage collector.

All symbols and theorems in Bourbaki are structures of type context:

(defstruct context

name

type

class

(meta (make-hash-table ’eq))

vars

hypo

assert

distinct

proof

19

(syms (make-hash-table ’equal))

imports

exports)

The syms, imports and exports are described in section 6.
There is some redundancy. The proof, for example, does not make sense

for a primitive symbol. Future versions of Bourbaki might take a more object-
orinted approach.

6 Symbol References

A symbol reference or symref is a function taking symtrees as arguments
and returning a symtree. Symrefs are used to represent argument transfor-
mations. For example, in the hierarchy of listing 5 above, the call

(in-context !/ topology

!closure)

returns a symref taking one argument. When applied to a symtree A this
symref returns [closure X A].

6.1 Terminology

The symbol references are structures of type symref:

(defstruct symref

target

arity

fn

proof)

where target is the referred context (or nil, if the symref does not refer to
a specific context), and fn is a Lisp function used to construct arguments for
the target context (fn should return a list of symtrees with length equal to
target’s arity). arity is an integer n describing the function fn.

If n ≥ 0, fn is a function taking some fixed number m ≥ n of arguments.
The symref is exact if m = n.

If n < 0, fn is a function taking a variable number of arguments, at least
|n| − 1.

20

A symref is composable if arity ≥ 0 and the target is not nil. In the
rest of this section we assume all symrefs to be composable. Symrefs with
variable number of arguments and nil target appear in section 9.

The function (mkcontext x) returns x itself if it is a context, and the
target of x if x is a composable symref. Many of the Bourbaki functions
taking context arguments also accept composable symrefs, calling mkcontext

if necessary. verify and print-theorem are examples of these.
Given an exact symref r with arity = n and some symtrees t1, . . . , tn

we can construct the symtree with r’s target as operator and the results of
(funcall (symref-fn r) t1 . . . tn) as arguments. The function apply-ref

performs this operation:

(defun apply-ref (ref rest args)

(cons (symref-target ref)

(apply (symref-fn ref) args)))

When speaking about applying a symref, we mean this operation.

6.2 Composing References

The fundamental operation of symrefs is composition. Given a composable
symref f of arity n and a symref g of arity m, (compose-ref f g) has arity
n+m. It is exact if and only if f is, and composable if and only if g is. The
target of (compose-ref f g) is the target of g.

When the function of (compose-ref f g) is called with arguments
a1, a2, . . . , an, b1, b2, . . . , bm, the first n arguments are given to f. f should
return a list c1, c2, . . . , ck of symtrees, where m + k is the actual number of
arguments g expects. The result of calling (compose-ref f g) is then the
result of calling g with c1, . . . , ck, b1, . . . , bm.

Corresponding to a theorem

(th "example " (type1 "var1" . . . typeN "varN ")

...)

the syms hashtable of the parent context contains a symref with arity = N

under the key "example". The symref function in this case just returns its
arguments unmodified. Contexts of other types are inserted into the symbol
table in the same way. Note that if an ancestor context of "example" has
variables, the arity of "example" is greater thanN and the symref is not exact

21

(the symref function should be called with all arguments for the target, not
just the innermost ones).

A reference !/x!y!z!example composes these subcontext references while
going down the context hierarchy, resulting in an exact symref with "example"’s
arity.

The composition of symrefs is an associative operation as long as all te
compositions are legal.

6.3 The Parser

The function symtree-parse takes arguments of various types and attempts
to construct a symtree from them. If the first argument op to symtree-parse

is a symref with arity = n ≥ 0, op is applied to the next n subtrees parsed
recursively (op must be an exact symref). If n < 0, subtrees are parsed
until all the arguments are used up. op is then applied to all of the parsed
subexpressions.

If the first argument is of any other type, it is immediately returned. This
allows construction of symtree patterns that have integers or Lisp symbols
in place of subtrees.

6.3.1 Examples

(symtree-parse !* !+ !a !b !- !a !b) finds that !* is a symref requir-
ing two arguments. It then parses the subtrees [+ a b] and [- a b] and
finally applies !* to them, resulting in [* [+ a b] [- a b]].

(symtree-parse !*

(symtree-parse !+ !a !b)

(symtree-parse !- !a !b))

returns the same symtree as the first example: when getting arguments for
!*, symtree-parse sees the two lists from the nested calls and passes them
to !*.

(symtree-parse !* 0 1) returns the symtree pattern (∗s 0 1).

6.3.2 Bracket syntax

The reader macro ‘[’ is an abbreviation for symtree-parse. Whitespace-
separated tokens are read until a ‘]’ is seen. Tokens beginning with one of
the characters ‘[’, ‘!’, ‘"’, ‘(’, or ‘,’ receive a special treatment. Otherwise

22

the token is a string naming a symbol in *current-context*. Thus [+ x y]

is an abbreviation for

(symtree-parse !+ !x !y)

The special characters are treated as follows:

• [begins a nested symtree. Using this construct is necessary to disam-
biguate expressions with operators taking a variable number of argu-
ments. It may be used at any time to parenthesize the expression for
clarity.

• ! begins a call to seek-sym read with the usual syntax of ‘!’.

• " reads a symbol name using Lisp syntax for strings. It may be
used to escape the special characters in a symbol’s name, for exam-
ple, [+ "[foo bar]" 3].

• When a ‘,’ is encountered, the Lisp reader is used to read a form. The
form is then evaluated and given to symtree-parse. This works like
with backquote. Example:

(let ((x [+ a b]) (y [- a b]))

[* ,x ,y])

produces the same symtree as [* + a b - a b]. [-> ,1 ,2] con-
structs a symtree pattern with integers.

6.4 Importing and Exporting

We now return to the example of topology in Hilbert spaces mentioned in
section 5, using topological closure as an example. Begin from the theories
of topological and metric spaces:

(theory "Topo" (set "X")

(hypo [topo-space X])

;; Define closure of A in the topology of X

(def "df-clos " set "clos" (set "A") ...)

;; Sample theorem : closure is idempotent

(th "clos-idem " (set "A")

23

(ass [= clos clos A clos A])))

(theory "Metric" (set "d")

(hypo [metric d])

;; Define the topology induced by d

(def "df-metric-topo" set "topology-of " () ...))

Now, to make use of the topology theorems for metric spaces, import the
context Topo:

(in-context !/ Metric

(import [Topo topology-of]))

This creates an exact symref i of arity 0 with the function

(lambda () (list [topology-of d]))

Now, when seek-sym tries to find a symbol named “clos” it looks not only
at the current context !/Metric, but also the imported context !/Topo. The
1-argument symref !clos is composed with i resulting in an exact symref
taking an argument A and returning the list ([topology-of d] A).

Imported symbols are only visible from the importing context. It is not
possible to use !/Metric!clos outside the context !/Metric. To achieve
this, we should use export instead of import:

(in-context !/ Metric

(export [Topo topology-of]))

Now !/Metric!clos can be used from everywhere as the closure operator
specialized to metric spaces: [!/Metric!clos d A] is the closure of A in the
topology induced by the metric d. The statement (export [Topo topology-of])

creates a symref e with arity 0 and function

(lambda (x) [topology-of ,x])

(Note that e is not an exact symref.) When parsing [!/Metric!clos d A],
the symref !Metric is composed with e and !clos yielding finally an exact
symref with arity 2 and function

(lambda (x y) [!Topo!closure [topology-of ,x] ,y])

The intended use of export is to provide specialized or extended versions
of theories, while import is used to abbreviate references within a context.

24

For example, most contexts will import propositional and predicate calculus
for easy use of the logic symbols.

We can now define the theories of normed and Hilbert spaces in the same
way:

(theory "Normed" (set "N")

(hypo [Normed-space N])

(def "df-metric " set "metric-of " () ...)

(export [Metric metric-of]))

(theory "Hilbert " (set "H")

(hypo [H-space H])

(def "df-norm " set "norm-of " () ...)

(export [Normed norm-of]))

Here the statement (export [Metric ...]) exports not only Metric,
but also all contexts exported from Metric by composing the symrefs associ-
ated with the export statements. Thus Normed will export all symbols from
Topo with the symref

(lambda (x) [topology-of metric-of ,x])

Likewise, Hilbert will export symbols from Topo, Metric and Normed.
The Bourbaki import and export are analoguous to the Lisp functions

with the same names; both deal with visibility of symbols. There are dif-
ferences, however: Bourbaki import and export deal with whole contexts
instead of individual symbols. The symbols and theorems defined within a
context are also exported by default.

More generally, default values can be given to just some of the variables
of the imported context by using import or export with a symtree pattern.
Take the theory of continuous functions, for example:

(theory "Cont" (set ![X Y])

;; f: X -> Y is continuous

(def "df-cont " wff "continuous " (set "f") ...)

...)

We can specialize this to continuous real-valued functions with

25

(local "real-valued "

(import [Cont ,0 R]))

(in-context !real-valued

(print-symtree [continuous A f]))

⇒ [continuous A R f]

and to paths (continuous functions from the unit interval I) with (import [Cont I ,0]).

6.5 Importing and exporting with proofs

In the account of previous section we have skipped over one detail: Topo

has hypothesis [topo-space X] while Hilbert has [H-space H]. It would
be nice if the proof fragment corresponding to Hilbert ⇒ Normed ⇒ Metric
⇒ Topology could be stored with the exports and inserted automatically
whenever a topology theorem is used in a Hilbert space proof.

The optional :proof argument of import and export does just this, as
illustrated in the following listing (see section 8 for linear-subproof):

(theory "Metric" (set "d")

(hypo [metric d])

;; Define the topology induced by d

(def "df-metric-topo" set "topology-of " () ...)

;; A conversion theorem :

;; the induced topology is a topological space

(th "Metric-to-Topo" ()

(ass [topo-space topology-of])

(proof ...))

;; Export !/Topo with a proof

(export [!/ Topo topology-of]

:proof (linear-subproof ([metric d])

([topo-space topology-of])

[Metric-to-Topo])))

When multiple symrefs with proofs are composed, the resulting proof will
be a concatenation of the original proof fragments. The proof is used when-
ever a reference to an axiom, theorem or definition is made via the symref

26

within the proof of a theorem (or whenever the variable *current-proof*

is set).

6.6 Seeking symbols

The function seek-sym seeks a symbol by name from the context hierarchy,
returning a symref. The first argument to seek-sym is either :rel or :abs

specifying search from the current context or the root.
In a call (seek-sym :rel "name1""name2"... "nameN") the first name

is searched from the imports of *current-context*. If a symbol s1 is found
via an import i, "name2" is searched from the exports of s1. For each further
name seek-sym takes one step “sideways”through an export and one step
“down” to find the next name. seek-sym composes the symrefs it follows
returning finally a symref with target a symbol named nameN. In an absolute
reference the first name is searched from the imports of *root-context*

instead.
The exports of a context K are searched in the following order:

1. K always exports itself with an identity symref

2. If K exports other contexts C1, . . . , Cn in this order, seek from the
export lists of the Ci in reverse order (first Cn, then contexts exported
by Cn, then Cn−1, and so on).

The imports of a context K are searched in the following order:

1. K imports itself with a constant function returning the list of variables
of K.

2. If K imports contexts C1, . . . , Cn, seek from the export lists of the Ci

in reverse order.

3. Seek from the import list of the parent of K.

Note that the list of exports is always a subset of the list of imports. A
statement (export [X]) adds X to both lists.

The reader macro ‘!’ abbreviates calls to seek-sym. After the initial ‘!’
or ‘!/’ exclamation mark separated tokens are read until whitespace is seen.
Special characters in a token can be escaped by enclosing it in double quotes.

27

6.7 Aliases

The imports and exports just described provide argument transformations
for whole contexts. Sometimes it is useful to abbreviate just a single symbol
or pattern of symbols in this way.

For example, binary relations are encoded as sets of ordered pairs in set
theory. Thus we would have to write 〈x, y〉 ∈≤set or [∈ pair x y ≤set] for
the usual x ≤ y.

We could of course introduce a definition

(def "df-less " wff "<=" (set ![x y]) ()

[∈ [pair x y] ≤])

but this has the inconvenience that ‘<=’ is a new primitive symbol from the
point of view of the verifier. Specialized versions of the general properties of
binary relations would have to be proved anew for every symbol introduced
in this way.

Instead we can introduce an alias to the symbol table:

(alias "<=" (set ![x y])

[∈ [pair x y] ≤])

The name ’<=’ is now associated with a symref (lambda (x y) [∈ [pair ,x ,y] ≤]).
The verifier never sees a symbol named ‘<=’.

The macro pattern constructs and returns this symref without inserting
it into the symbol table:

(pattern (set ![x y])

[∈ [pair x y] ≤])

7 Modules and Files

It is common to have theorems of similar form, but different symbols in
their assertions. Taking the partial orders (actually lattices) ≤ and ⊆ as
an example, we have theorem pairs such as ‘x ≤ y ⇔ x = min(x, y)’ and
‘x ⊆ y ⇔ x = x ∩ y’. The following listing exhibits the characteristic
properties of these relations using a generic “object” symkind.

Listing 6: Partial orders

;;; File order.lisp

28

(module "order"

(symkind "OBJ")

(prim wff "≤" (obj ![a b]))

;; Define the associated strict order

(def "df-less " wff "<" (obj ![a b])

[∧ ≤ a b 6= a b])

(def "df-meet " obj "/\\" (obj ![a b]) ...)

(def "df-join " obj "\/" (obj ![a b]) ...)

;;; Axioms for partial orders

;; Antisymmetric law

(ax "antisym " (obj ![a b])

(ass [→ ∧ ≤ a b ≤ b a = a b]))

;; Transitive law

(ax "tr" (obj ![a b c])

(ass [→ ∧ ≤ a b ≤ b c ≤ a c]))

;;; Theorems for partial orders

(th "meet-le " (obj ![a b])

(ass [↔ [≤ a b] [= a /\ a b]]))

...)

We would now like to interpret !/order in the language of set theory to
get versions of the theorems with x ⊆ y and 〈x, y〉 ∈≤ where !/order has
[≤ x y].

The solution is to load order.lisp in such a way that Bourbaki sees
aliases for the relevant symbols instead of the declarations in order.lisp.
We now describe the functions require and providing that are used to set
up this interpretation.

29

7.1 Require

The function (require name module) looks for a top-level context name. If
such a context exists, a reference to it is returned as if !/name was used. Oth-
erwise the file module.lisp is loaded (from the directory *bourbaki-db-path*

whose default value is the "lib" subdirectory). The file should define a top-
level context with the same name module.

Before loading the file, require sets *root-context* to a newly cre-
ated context. This new root context is made to import the previous one.
module.lisp is thus free to define any additional top-level contexts without
cluttering the namespace of the module requiring it. This is similar to Java,
where a .java file can contain one public class with the same name, and
additionally any number of private classes.

After the file is loaded, require inserts the symref to module to the
previous root context’s symbol table under the key name and also returns
this symref.

Usually require is called with both arguments the same. The reader
macro !!module is an abbreviation for (require modulemodule). This
leads to the idiomatic expression (import [!!module]) where the module
is loaded and imported at the same time.

A case where the name argument is needed would be second order logic,
where we have predicate calculus for two kinds of variables ranging over
objects and collections. There we would use something like

(require "obj" "predicate ")

(require "coll" "predicate ")

Returning to the example of partial orderds, we now move the axioms
and definitions to their own file:

;;; File order-ax .lisp

(module "order-ax "

(symkind "OBJ")

(prim wff "≤" (obj ![a b]))

;; other primitive symbols , axioms and definitions as before

)

order.lisp will then require the axiom file:

30

;;; File order.lisp

(module "order"

(symkind "OBJ")

(export [!! order-ax])

;;; Theorems for partial orders

(th "meet-le " (obj ![a b])

(ass [↔ [≤ a b] [= a /\ a b]]))

;; other theorems as before

)

Note that symbol kinds are stored in the symbol table of each root con-
text. Both files need to declare (symkind "OBJ") to ensure they use com-
patible types. The declaration in order-ax.lisp sees that a symkind with
the same name is already visible (through the import of order.lisp’s root
context) and does not try to redefine the type. If the declaration was omit-
ted, order-ax.lisp could not be verified standalone. If the declaration in
order.lisp was omitted, the OBJ from order-ax.lisp would not be copied
into the root context of order.lisp and the theorems would not parse.

The only thing remaining to interpret the theory of partial orders is to
set order-ax and OBJ properly before using (require "order").

7.2 Providing

The macro providing evaluates its body within a temporary root context
that has a specified set of top-level bindings:

provide-form := (providing (binding *) body)

binding := (name symref)

Now the set theory file can make use of order.lisp:

;;; file set.lisp

(module "set"

(symkind "SET")

31

;; ...

;; properties of the subset relation

(local "sub"

(th "subset-antisym" (set ![A B])

(ass [→ ∧ ⊆ A B ⊆ B A = A B])

(proof ...))

;; ...

(let ((prov (defcontext :context "provide-order-ax" ()

(alias "≤" (set ![a b])

[⊆ a b])

(alias "antisym " (set ![a b])

[subset-antisym a b])

;; other symbols and axioms in the same way

)))

(providing (("order-ax " prov)

("OBJ" !/SET))

(export [!! order])))))

Theorems for partial orders specialized to the subset relation are now
available as !/set!sub!meet-le and so on. Similarly a calculus filed could
require order with aliases (alias "≤"(set ![x y]) [∈ pair x y ≤]).
Bourbaki does not currently check that the provided aliases match with the
symbols in order-ax.lisp (that the alias ‘≤’ points to a symbol with arity
two and so on). The parser and the verifier must be relied on to catch any
mismatches.

Note that the temporary root context created by providing does not
import the previous *root-context* and the entries in its symbol table
are not copied to the root context of set.lisp. After the providing form
finishes, the only way to access the order theorems is through the export

in !/set!sub.
In summary, the require function is used in two ways:

• Within a providing form to interpret an existing theory

• At top level to state what axioms or parameters are needed and what

32

are their default values

7.3 Writing re-usable modules

Making a module interpretable in many different contexts puts some con-
straints on it.

• The module should not depend on the exact properties of the symbols
in the required modules. The ‘≤’ in order-ax.lisp might be an alias
expanding to a complex expression rather than being a primitive sym-
bol. This implies that symtrees should not be constructed manually,
symtree-parse must always be used.

• The module should not try to redefine or add symbols to the required
contexts.

• Top-level contexts other than those explicitly required may be visible
when the file is being loaded. New “private” modules may always be
defined without fearing name clashes, however.

• The module could be loaded multiple times within the same session. If
the file defines any global functions or variables, these will be redefined
each time the file is loaded. Global references to the Bourbaki context
system should not be put outside the system.

8 Structured Proofs

The stricktly linear proofs used so far fails to separate the trivial manipula-
tions necessary in a formal proof from the “interesting” proof steps. Bourbaki
actually uses a structured proof format like the one described in [6].

A structured proof consists of hypotheses, assertions and justification.
The justification is either a theorem reference (that is, a symtree whose op-
erator is a theorem) or a sequence of (structured) subproofs. We call these
type 1 and type 2 proofs, respectively. The proof of a theorem has the same
hypotheses and assertions as the theorem. Structured proofs are objects of
type subproof:

(defstruct subproof

hypo

33

assert

ref ; for type 1 proofs

sub ; for type 2 proofs

)

8.1 Verifying structured proofs

To check the validity of a structured proof, we maintain lists of wffs proved
at each level of the proof. The first list is initialized with the hypotheses of
the theorem being proved.

The algorithm for a type 2 proof P goes as follows:

1. create a new empty list L.

2. for each subproof S,

• check the validity of S

• add the assertions of S to L.

3. check that each assertion of P is in L or one of the upper level lists

4. discard the list L. Following steps may use only the stated assertions
of P , not any intermediate results.

For a type 1 proof P ,

1. check that the substituted expressions are well-formed and satisfy the
distinct variable conditions of the referred theorem

2. check that the (substituted) hypotheses of the theorem are found in
the upper-level lists of proven expressions

3. check that the assertions of P are among the substituted assertions of
the theorem.

Note that the hypotheses of a subproof are ignored; they are only hints
for humans and programs manipulating the proof.

Any structured proof can be “flattened” and the result will be valid ac-
cording to the algorithm of section 3.1. The converse is not true: if a struc-
tured proof step depends on some intermediate results of a type 2 subproof,
the flattened version will be valid even though the original proof is not.

34

8.2 Parsing proofs

There are several ways to create proof objects in Bourbaki.
The function parse-subproof handles several kinds of arguments:

• A theorem reference is wrapped in a type 1 subproof with the obvious
hypotheses and assertions.

• An argument of the subproof type is returned without modification

• When given an ordinary wff, parse-subproof seeks for a theorem prov-
ing this wff (see section 8.3).

• When given a symref pointing to a theorem, parse-subproof unifies
hypotheses of the theorem against the previously proved wffs as in
a Metamath-style RPN proof. (Not implemented yet; this requires
maintaining the proof stack separately.)

When symtree-parse is used within a structured proof to construct a
reference to an imported theorem, and the import has an associated proof
fragment (section 6.5), a type 2 subproof consisting of the fragment and the
intended theorem reference is returned instead.

The most general macro to create type 2 proofs is subproof:

subproof-form := (subproof (:hypo form :assert form) body)

The :hypo and :assert forms should be lists of wffs. Within the body, the
macros hypo, ass and line are locally defined to add hypotheses, assertions
and subproofs to the proof being created. line calls parse-subproof on its
argument.

Within the body of a subproof form the variable *current-proof*

points to the list of assertions proved at earlier steps (including upper levels
of the proof). Membership on this list can be tested with (provenp wff).

The case where the body of a subproof form is just a sequence of line
forms is abbreviated with the macro linear-subproof:

linear-form := (linear-subproof (hypo*) (assertion *) line*)

hypo := symtree

assertion := symtree

line := theorem-reference | symtree | subproof

Each line is parsed by parse-subproof. The macro proof is a version of
linear-subproof that uses the hypotheses and assertions of *current-context*
by default and sets the resulting proof object into the proof slot of *current-context*.

35

8.3 Seeking theorems

The function parse-subproof accepts not only theorem references. When
given a wff, it tries to find a theorem proving that wff. For this to be practical
references to theorems are stored to a search tree indexed by symbols in the
assertions of the theorem. This means that a wff [-> [\/ x y] [/\ u v]]

needs only be tested against theorems of the forms [-> a b] (with [\/ x y]

substituted for a and [/\ u v] for b), [-> [\/ a b] c], and [-> [\/ a b] [/\ c d]].
Each candidate theorem is tested with the same method that verify uses so
that hypotheses and distinct variable conditions are correctly checked.

Seeking currently works only for theorems whose assertion contains all
the variables of the theorem. This excludes inference rules such as modus
ponens. To apply modus ponens when proving a wff φ we would have to
find a wff of the form [→ ψ φ] among the already proved wffs such that
ψ has also been proved. The complexity for finding substitutions for these
“extra” variables explodes combinatorically as the number of variables and
hypotheses increases.

A theorem must be registered with the function th-pattern to make
parse-proof consider it for seeking.

8.4 Pattern trees

TODO: insert here a description of the trees of wff patterns indexed by sym-
bols; these are used by parse-subproof for seeking theorems and provenp

for testing if a wff has been proved. Several functions in pattern.lisp for
adding wffs to trees and checking membership. Note that removing wffs from
pattern trees is not yet possible.

9 Metasymbols

What we have so far done with symrefs amounts to substitution of variables
in symtrees. Why not put more general Lisp functions in the fn slot of a
symref? For example, we could want a summation operator Σ taking variable
number of arguments so that

• [Σ x] is parsed to [x],

• [Σ a b ... n] is parsed to [+ a [+ b [+ ... n]]],

36

• [Σ] is parsed to [0].

As a Lisp function we would write

(defun sum (& rest terms)

(case (length terms)

(0 [0])

(1 (car terms))

(otherwise [+ ,(car terms) ,(apply #’sum (cdr terms))])))

The macro metath can be used to place our function in the context sys-
tem:

(metath "Σ" (&rest terms)

(labels ((sum (terms)

(case (length terms)

(0 [0])

(1 (car terms))

(otherwise [+ ,(car terms)

,(funcall #’sum (cdr terms))]))))

(funcall #’sum terms)))

and [Σ x y z ...] now works as advertised. The name metath refers of
course to metatheorems, but as in the current case, it can be used to define
metasymbols of any type.

The call (metath name (vars) body) places a symref with the func-
tion (lambda (vars) body) into the symbol table of the current context
under the key name. The symref has nil target and arity −1. When
symtree-parse encounters a symref with negative arity, it parses subexpres-
sions until it runs out of arguments. The symref function is then applied to
all the subexpressions. Unlike ordinary symrefs, the function must return a
complete symtree rather than the list of arguments for the target. Because
of these differences, symrefs created with metath cannot be used as the first
argument to compose-ref.

9.1 Resolving name clashes

Our ‘Σ’ has a potential problem: the values of [0] and [+ a b] depend
on the symbols visible from *current-context* at the time the [Σ ...]

expression is parsed. The results may be unexpected should the user redefine

37

‘+’. (Sometimes having ‘Σ’ automatically use the currently visible ‘+’ is just
the right thing, however).

When the metasymbol function is called, the variable *meta-context* is
bound to the value of *current-context* at the time the metasymbol was
being defined. An unambiguous version of ‘Σ’ would be

(metath "Σ" (&rest terms)

(in-context *meta-context *

(labels ((sum (&rest terms)

;; the rest as before

)))))

9.2 Working with proofs

Metasymbols constructing proofs or theorems are called metatheorems. The
following listing illustrates some of the tools Bourbaki provides for writing
metatheorems. “infer” converts a proof of φ→ ψ or φ↔ ψ to a proof of ψ
under the hypothesis φ (or possibly vice versa in the case of a biconditional).

(metath "infer" (line)

;; treat argument as a subproof

(let ((prf (parse-subproof line)))

(in-context *meta-context *

;; This works only for proofs with one assertion

(match-case (car (subproof-assert prf))

([-> ,’?x ,’?y]

(linear-subproof (?x) (?y)

prf

[ax-mp ,?x ,?y]))

([<-> ,’?x ,’?y]

(if (provenp ?x)

(linear-subproof (?x) (?y)

prf

;; convert <-> to ->

[bi > ,?x ,?y]

[ax-mp ,?x ,?y])

(if (provenp ?y)

(linear-subproof (?y) (?x)

prf

38

;; convert <-> to <-

[bi < ,?x ,?y]

[ax-mp ,?y ,?x]))))))))

This uses the pattern matching version of case, a similar macro if-match

is also defined. Note that in the case of a biconditional the metatheorem tests
which direction is intended by using the list *current-proof* of proven
assertions.

The "infer" metatheorems saves the user from invoking modus po-
nens explicitly. It would be used like [infer ax2 X Y Z]. Compare this
with the Metamath convention of naming “inference” versions of theorems:
[ax2i X Y Z].

9.3 Virtual namespaces

Sometimes it is necessary to create completely new theorem objects. For
example, the deduction theorem converts a proof of ψ under the hypothesis
φ to a proof of φ → ψ. To do this, it needs to recursively create deduction
versions of theorems referenced by the proof.

There is a special macro virtual-metath for writing theorem-creating
functions. A metatheorem created with virtual-metath should take exactly
one argument that is a context, and also return a context. The results are
memoized to avoid wasting space and time computing the same theorems
again and again.

In addition to the standard way [theorem ,argument] of invoking metathe-
orems Bourbaki experimentally supports virtual namespaces. When a theo-
rem reference !/virtual!x!y!z is parsed where !/virtual is created with
virtual-metath, the remaining part !x!y!z is taken as a full name of a con-
text. This context is given to !/virtual and the returned context is used
instead of z. This way references can be printed to the theorems created on
fly.

References

[1] Bourbaki: Elements of Mathematics. Theory of Sets, Chapter IV

[2] The Common Lisp HyperSpec, http://www.lisp.org/HyperSpec/FrontMatter/

[3] Megill: Metamath. Available at http://us.metamath.org/#book

39

[4] Mendelson: Introduction to Mathematical Logic, third edition, p. 44

[5] Megill: http://us.metamath.org/mpegif/mmset.html#distinct

[6] Lamport: How to Write a Proof,
http://research.microsoft.com/users/lamport/
pubs/pubs.html#lamport-how-to-write

40

