Theorem sspwimpALT2VD 
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in http://www.virtualdeduction.com/sspwimpaltvd.html. (Contributed by Alan Sare, 11-Sep-2016.)
Assertion
Ref Expression
sspwimpALT2VD (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwimpALT2VD
StepHypExpression
1 (   𝐴𝐵   ▶   𝐴𝐵   )
2 (   𝑥 ∈ 𝒫 𝐴   ▶   𝑥 ∈ 𝒫 𝐴   )
32 (   𝑥 ∈ 𝒫 𝐴   ▶   𝑥𝐴   )
43,1 (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5 𝑥 ∈ V
64,5 (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵   )
76 (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)   )
87 (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)   )
98 (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed9 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Copyright terms: Public domain