ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eumo Unicode version

Theorem 2eumo 2030
Description: Double quantification with existential uniqueness and "at most one." (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eumo  |-  ( E! x E* y ph  ->  E* x E! y
ph )

Proof of Theorem 2eumo
StepHypRef Expression
1 euimmo 2009 . 2  |-  ( A. x ( E! y
ph  ->  E* y ph )  ->  ( E! x E* y ph  ->  E* x E! y ph )
)
2 eumo 1974 . 2  |-  ( E! y ph  ->  E* y ph )
31, 2mpg 1381 1  |-  ( E! x E* y ph  ->  E* x E! y
ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E!weu 1942   E*wmo 1943
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator