ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexnim Unicode version

Theorem alexnim 1580
Description: A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
alexnim  |-  ( A. x E. y  -.  ph  ->  -.  E. x A. y ph )

Proof of Theorem alexnim
StepHypRef Expression
1 exnalim 1578 . . 3  |-  ( E. y  -.  ph  ->  -. 
A. y ph )
21alimi 1385 . 2  |-  ( A. x E. y  -.  ph  ->  A. x  -.  A. y ph )
3 alnex 1429 . 2  |-  ( A. x  -.  A. y ph  <->  -. 
E. x A. y ph )
42, 3sylib 120 1  |-  ( A. x E. y  -.  ph  ->  -.  E. x A. y ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1283   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-17 1460  ax-ial 1468
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391
This theorem is referenced by:  nalset  3916  bj-nalset  10844
  Copyright terms: Public domain W3C validator