ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-9 Unicode version

Theorem ax-9 1418
Description: Derive ax-9 1418 from ax-i9 1417, the modified version for intuitionistic logic.
Assertion
Ref Expression
ax-9

Proof of Theorem ax-9
StepHypRef Expression
1 ax-i9 1417 . . 3
21notnoti 553 . 2
3 alnex 1380 . 2
42, 3mtbir 575 1
Colors of variables: wff set class
Syntax hints:   wn 3  wal 1335  wex 1374   wceq 1383
This theorem is referenced by:  equidqe  1419  equidqeOLD  1420  ax4  1423
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8  ax-ia1 98  ax-ia2 99  ax-ia3 100  ax-in1 527  ax-in2 528  ax-5 1336  ax-gen 1339  ax-ie2 1376  ax-i9 1417
This theorem depends on definitions:  df-bi 109  df-tru 1313  df-fal 1314
  Copyright terms: Public domain W3C validator