Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv2h Unicode version

Theorem cbv2h 1675
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
cbv2h.1
cbv2h.2
cbv2h.3
Assertion
Ref Expression
cbv2h

Proof of Theorem cbv2h
StepHypRef Expression
1 cbv2h.1 . . 3
2 cbv2h.2 . . 3
3 cbv2h.3 . . . 4
4 bi1 116 . . . 4
53, 4syl6 33 . . 3
61, 2, 5cbv1h 1674 . 2
7 equcomi 1633 . . . . 5
8 bi2 128 . . . . 5
97, 3, 8syl56 34 . . . 4
102, 1, 9cbv1h 1674 . . 3
1110a7s 1384 . 2
126, 11impbid 127 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103  wal 1283 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469 This theorem depends on definitions:  df-bi 115  df-nf 1391 This theorem is referenced by:  cbv2  1676
 Copyright terms: Public domain W3C validator