ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sumdc Unicode version

Definition df-sumdc 11128
Description: Define the sum of a series with an index set of integers  A.  k is normally a free variable in  B, i.e.  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an  if expression so that we only need  B to be defined where  k  e.  A. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e. finite sets of integers). Examples: 
sum_ k  e.  {
1 ,  2 ,  4 }  k means  1  +  2  +  4  =  7, and  sum_ k  e.  NN  (
1  /  ( 2 ^ k ) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11296). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
Assertion
Ref Expression
df-sumdc  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
Distinct variable groups:    f, k, m, n, x, j    A, f, m, n, x, j    B, f, m, n, x, j
Allowed substitution hints:    A( k)    B( k)

Detailed syntax breakdown of Definition df-sumdc
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 vk . . 3  setvar  k
41, 2, 3csu 11127 . 2  class  sum_ k  e.  A  B
5 vm . . . . . . . . 9  setvar  m
65cv 1330 . . . . . . . 8  class  m
7 cuz 9331 . . . . . . . 8  class  ZZ>=
86, 7cfv 5123 . . . . . . 7  class  ( ZZ>= `  m )
91, 8wss 3071 . . . . . 6  wff  A  C_  ( ZZ>= `  m )
10 vj . . . . . . . . . 10  setvar  j
1110cv 1330 . . . . . . . . 9  class  j
1211, 1wcel 1480 . . . . . . . 8  wff  j  e.  A
1312wdc 819 . . . . . . 7  wff DECID  j  e.  A
1413, 10, 8wral 2416 . . . . . 6  wff  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A
15 caddc 7628 . . . . . . . 8  class  +
16 vn . . . . . . . . 9  setvar  n
17 cz 9059 . . . . . . . . 9  class  ZZ
1816cv 1330 . . . . . . . . . . 11  class  n
1918, 1wcel 1480 . . . . . . . . . 10  wff  n  e.  A
203, 18, 2csb 3003 . . . . . . . . . 10  class  [_ n  /  k ]_ B
21 cc0 7625 . . . . . . . . . 10  class  0
2219, 20, 21cif 3474 . . . . . . . . 9  class  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
2316, 17, 22cmpt 3989 . . . . . . . 8  class  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
2415, 23, 6cseq 10223 . . . . . . 7  class  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )
25 vx . . . . . . . 8  setvar  x
2625cv 1330 . . . . . . 7  class  x
27 cli 11052 . . . . . . 7  class  ~~>
2824, 26, 27wbr 3929 . . . . . 6  wff  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x
299, 14, 28w3a 962 . . . . 5  wff  ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
3029, 5, 17wrex 2417 . . . 4  wff  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
31 c1 7626 . . . . . . . . 9  class  1
32 cfz 9795 . . . . . . . . 9  class  ...
3331, 6, 32co 5774 . . . . . . . 8  class  ( 1 ... m )
34 vf . . . . . . . . 9  setvar  f
3534cv 1330 . . . . . . . 8  class  f
3633, 1, 35wf1o 5122 . . . . . . 7  wff  f : ( 1 ... m
)
-1-1-onto-> A
37 cn 8725 . . . . . . . . . . 11  class  NN
38 cle 7806 . . . . . . . . . . . . 13  class  <_
3918, 6, 38wbr 3929 . . . . . . . . . . . 12  wff  n  <_  m
4018, 35cfv 5123 . . . . . . . . . . . . 13  class  ( f `
 n )
413, 40, 2csb 3003 . . . . . . . . . . . 12  class  [_ (
f `  n )  /  k ]_ B
4239, 41, 21cif 3474 . . . . . . . . . . 11  class  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 )
4316, 37, 42cmpt 3989 . . . . . . . . . 10  class  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )
4415, 43, 31cseq 10223 . . . . . . . . 9  class  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )
456, 44cfv 5123 . . . . . . . 8  class  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)
4626, 45wceq 1331 . . . . . . 7  wff  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
)
4736, 46wa 103 . . . . . 6  wff  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4847, 34wex 1468 . . . . 5  wff  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4948, 5, 37wrex 2417 . . . 4  wff  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) )
5030, 49wo 697 . . 3  wff  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )
5150, 25cio 5086 . 2  class  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
524, 51wceq 1331 1  wff  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
Colors of variables: wff set class
This definition is referenced by:  sumeq1  11129  nfsum1  11130  nfsum  11131  sumeq2  11133  cbvsum  11134  zsumdc  11158  fsum3  11161
  Copyright terms: Public domain W3C validator