ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4an Unicode version

Theorem iota4an 4916
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4an  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph )

Proof of Theorem iota4an
StepHypRef Expression
1 iota4 4915 . 2  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ph  /\  ps ) )
2 euiotaex 4913 . . . 4  |-  ( E! x ( ph  /\  ps )  ->  ( iota
x ( ph  /\  ps ) )  e.  _V )
3 simpl 107 . . . . 5  |-  ( (
ph  /\  ps )  ->  ph )
43sbcth 2829 . . . 4  |-  ( ( iota x ( ph  /\ 
ps ) )  e. 
_V  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ( ( ph  /\  ps )  ->  ph )
)
52, 4syl 14 . . 3  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ( ph  /\  ps )  ->  ph )
)
6 sbcimg 2856 . . . 4  |-  ( ( iota x ( ph  /\ 
ps ) )  e. 
_V  ->  ( [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ( ph  /\  ps )  ->  ph )  <->  (
[. ( iota x
( ph  /\  ps )
)  /  x ]. ( ph  /\  ps )  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ph ) ) )
72, 6syl 14 . . 3  |-  ( E! x ( ph  /\  ps )  ->  ( [. ( iota x ( ph  /\ 
ps ) )  /  x ]. ( ( ph  /\ 
ps )  ->  ph )  <->  (
[. ( iota x
( ph  /\  ps )
)  /  x ]. ( ph  /\  ps )  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ph ) ) )
85, 7mpbid 145 . 2  |-  ( E! x ( ph  /\  ps )  ->  ( [. ( iota x ( ph  /\ 
ps ) )  /  x ]. ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph ) )
91, 8mpd 13 1  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   E!weu 1942   _Vcvv 2602   [.wsbc 2816   iotacio 4895
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-sn 3412  df-pr 3413  df-uni 3610  df-iota 4897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator