ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfse Unicode version

Theorem nfse 4106
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfse.r  |-  F/_ x R
nfse.a  |-  F/_ x A
Assertion
Ref Expression
nfse  |-  F/ x  R Se  A

Proof of Theorem nfse
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 4098 . 2  |-  ( R Se  A  <->  A. b  e.  A  { a  e.  A  |  a R b }  e.  _V )
2 nfse.a . . 3  |-  F/_ x A
3 nfcv 2194 . . . . . 6  |-  F/_ x
a
4 nfse.r . . . . . 6  |-  F/_ x R
5 nfcv 2194 . . . . . 6  |-  F/_ x
b
63, 4, 5nfbr 3836 . . . . 5  |-  F/ x  a R b
76, 2nfrabxy 2507 . . . 4  |-  F/_ x { a  e.  A  |  a R b }
87nfel1 2204 . . 3  |-  F/ x { a  e.  A  |  a R b }  e.  _V
92, 8nfralxy 2377 . 2  |-  F/ x A. b  e.  A  { a  e.  A  |  a R b }  e.  _V
101, 9nfxfr 1379 1  |-  F/ x  R Se  A
Colors of variables: wff set class
Syntax hints:   F/wnf 1365    e. wcel 1409   F/_wnfc 2181   A.wral 2323   {crab 2327   _Vcvv 2574   class class class wbr 3792   Se wse 4094
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rab 2332  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-se 4098
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator