ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poss Unicode version

Theorem poss 4055
Description: Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
poss  |-  ( A 
C_  B  ->  ( R  Po  B  ->  R  Po  A ) )

Proof of Theorem poss
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3059 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. x  e.  A  A. y  e.  B  A. z  e.  B  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
2 ssralv 3059 . . . . 5  |-  ( A 
C_  B  ->  ( A. y  e.  B  A. z  e.  B  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. y  e.  A  A. z  e.  B  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
3 ssralv 3059 . . . . . 6  |-  ( A 
C_  B  ->  ( A. z  e.  B  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
43ralimdv 2431 . . . . 5  |-  ( A 
C_  B  ->  ( A. y  e.  A  A. z  e.  B  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
52, 4syld 44 . . . 4  |-  ( A 
C_  B  ->  ( A. y  e.  B  A. z  e.  B  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
65ralimdv 2431 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  A  A. y  e.  B  A. z  e.  B  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
71, 6syld 44 . 2  |-  ( A 
C_  B  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
8 df-po 4053 . 2  |-  ( R  Po  B  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
9 df-po 4053 . 2  |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
107, 8, 93imtr4g 203 1  |-  ( A 
C_  B  ->  ( R  Po  B  ->  R  Po  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102   A.wral 2349    C_ wss 2974   class class class wbr 3787    Po wpo 4051
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-ral 2354  df-in 2980  df-ss 2987  df-po 4053
This theorem is referenced by:  poeq2  4057  soss  4071
  Copyright terms: Public domain W3C validator