Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabn0m Unicode version

Theorem rabn0m 3273
 Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.)
Assertion
Ref Expression
rabn0m
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rabn0m
StepHypRef Expression
1 df-rex 2329 . 2
2 rabid 2502 . . 3
32exbii 1512 . 2
4 nfv 1437 . . 3
5 df-rab 2332 . . . . 5
65eleq2i 2120 . . . 4
7 nfsab1 2046 . . . 4
86, 7nfxfr 1379 . . 3
9 eleq1 2116 . . 3
104, 8, 9cbvex 1655 . 2
111, 3, 103bitr2ri 202 1
 Colors of variables: wff set class Syntax hints:   wa 101   wb 102  wex 1397   wcel 1409  cab 2042  wrex 2324  crab 2327 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-rex 2329  df-rab 2332 This theorem is referenced by:  exss  3991
 Copyright terms: Public domain W3C validator