ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reupick3 Unicode version

Theorem reupick3 3256
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick3  |-  ( ( E! x  e.  A  ph 
/\  E. x  e.  A  ( ph  /\  ps )  /\  x  e.  A
)  ->  ( ph  ->  ps ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem reupick3
StepHypRef Expression
1 df-reu 2356 . . . 4  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 df-rex 2355 . . . . 5  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  E. x ( x  e.  A  /\  ( ph  /\ 
ps ) ) )
3 anass 393 . . . . . 6  |-  ( ( ( x  e.  A  /\  ph )  /\  ps ) 
<->  ( x  e.  A  /\  ( ph  /\  ps ) ) )
43exbii 1537 . . . . 5  |-  ( E. x ( ( x  e.  A  /\  ph )  /\  ps )  <->  E. x
( x  e.  A  /\  ( ph  /\  ps ) ) )
52, 4bitr4i 185 . . . 4  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  E. x ( ( x  e.  A  /\  ph )  /\  ps ) )
6 eupick 2021 . . . 4  |-  ( ( E! x ( x  e.  A  /\  ph )  /\  E. x ( ( x  e.  A  /\  ph )  /\  ps ) )  ->  (
( x  e.  A  /\  ph )  ->  ps ) )
71, 5, 6syl2anb 285 . . 3  |-  ( ( E! x  e.  A  ph 
/\  E. x  e.  A  ( ph  /\  ps )
)  ->  ( (
x  e.  A  /\  ph )  ->  ps )
)
87expd 254 . 2  |-  ( ( E! x  e.  A  ph 
/\  E. x  e.  A  ( ph  /\  ps )
)  ->  ( x  e.  A  ->  ( ph  ->  ps ) ) )
983impia 1136 1  |-  ( ( E! x  e.  A  ph 
/\  E. x  e.  A  ( ph  /\  ps )  /\  x  e.  A
)  ->  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920   E.wex 1422    e. wcel 1434   E!weu 1942   E.wrex 2350   E!wreu 2351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-3an 922  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-rex 2355  df-reu 2356
This theorem is referenced by:  reupick2  3257
  Copyright terms: Public domain W3C validator