ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqbii Unicode version

Theorem rexeqbii 2354
Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
raleqbii.1  |-  A  =  B
raleqbii.2  |-  ( ps  <->  ch )
Assertion
Ref Expression
rexeqbii  |-  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )

Proof of Theorem rexeqbii
StepHypRef Expression
1 raleqbii.1 . . . 4  |-  A  =  B
21eleq2i 2120 . . 3  |-  ( x  e.  A  <->  x  e.  B )
3 raleqbii.2 . . 3  |-  ( ps  <->  ch )
42, 3anbi12i 441 . 2  |-  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch )
)
54rexbii2 2352 1  |-  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )
Colors of variables: wff set class
Syntax hints:    <-> wb 102    = wceq 1259    e. wcel 1409   E.wrex 2324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-17 1435  ax-ial 1443  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-cleq 2049  df-clel 2052  df-rex 2329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator