Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrot4 Unicode version

Theorem rexrot4 2521
 Description: Rotate existential restricted quantifiers twice. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexrot4
Distinct variable groups:   ,,   ,,   ,,,   ,,,
Allowed substitution hints:   (,,,)   (,)   (,)   ()   ()

Proof of Theorem rexrot4
StepHypRef Expression
1 rexcom13 2520 . . 3
21rexbii 2374 . 2
3 rexcom13 2520 . 2
42, 3bitri 182 1
 Colors of variables: wff set class Syntax hints:   wb 103  wrex 2350 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator