ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6rf Unicode version

Theorem sb6rf 1749
Description: Reversed substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sb5rf.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
sb6rf  |-  ( ph  <->  A. y ( y  =  x  ->  [ y  /  x ] ph )
)

Proof of Theorem sb6rf
StepHypRef Expression
1 sb5rf.1 . . 3  |-  ( ph  ->  A. y ph )
2 sbequ1 1667 . . . . 5  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
32equcoms 1610 . . . 4  |-  ( y  =  x  ->  ( ph  ->  [ y  /  x ] ph ) )
43com12 30 . . 3  |-  ( ph  ->  ( y  =  x  ->  [ y  /  x ] ph ) )
51, 4alrimih 1374 . 2  |-  ( ph  ->  A. y ( y  =  x  ->  [ y  /  x ] ph ) )
6 sb2 1666 . . 3  |-  ( A. y ( y  =  x  ->  [ y  /  x ] ph )  ->  [ x  /  y ] [ y  /  x ] ph )
71sbid2h 1745 . . 3  |-  ( [ x  /  y ] [ y  /  x ] ph  <->  ph )
86, 7sylib 131 . 2  |-  ( A. y ( y  =  x  ->  [ y  /  x ] ph )  ->  ph )
95, 8impbii 121 1  |-  ( ph  <->  A. y ( y  =  x  ->  [ y  /  x ] ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102   A.wal 1257   [wsb 1661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443
This theorem depends on definitions:  df-bi 114  df-sb 1662
This theorem is referenced by:  2sb6rf  1882  eu1  1941
  Copyright terms: Public domain W3C validator