Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcom2 Unicode version

Theorem sbcom2 1906
 Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
sbcom2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,,,)

Proof of Theorem sbcom2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbcom2v2 1905 . . . 4
21sbbii 1690 . . 3
3 sbcom2v2 1905 . . 3
42, 3bitri 182 . 2
5 ax-17 1460 . . 3
65sbco2v 1864 . 2
7 ax-17 1460 . . . 4
87sbco2v 1864 . . 3
98sbbii 1690 . 2
104, 6, 93bitr3i 208 1
 Colors of variables: wff set class Syntax hints:   wb 103  wsb 1687 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688 This theorem is referenced by:  2sb5rf  1908  2sb6rf  1909  sbco4lem  1925  sbco4  1926  sbmo  2002  cnvopab  4776
 Copyright terms: Public domain W3C validator