Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcom2 GIF version

Theorem sbcom2 1879
 Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
sbcom2 ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
Distinct variable groups:   𝑥,𝑧   𝑥,𝑤   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem sbcom2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 sbcom2v2 1878 . . . 4 ([𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑧]𝜑)
21sbbii 1664 . . 3 ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑧]𝜑)
3 sbcom2v2 1878 . . 3 ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑)
42, 3bitri 177 . 2 ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑)
5 ax-17 1435 . . 3 ([𝑦 / 𝑥]𝜑 → ∀𝑣[𝑦 / 𝑥]𝜑)
65sbco2v 1837 . 2 ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)
7 ax-17 1435 . . . 4 (𝜑 → ∀𝑣𝜑)
87sbco2v 1837 . . 3 ([𝑤 / 𝑣][𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑)
98sbbii 1664 . 2 ([𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
104, 6, 93bitr3i 203 1 ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 Colors of variables: wff set class Syntax hints:   ↔ wb 102  [wsb 1661 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662 This theorem is referenced by:  2sb5rf  1881  2sb6rf  1882  sbco4lem  1898  sbco4  1899  sbmo  1975  cnvopab  4754
 Copyright terms: Public domain W3C validator