Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegf Unicode version

Theorem spcegf 2682
 Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
Hypotheses
Ref Expression
spcgf.1
spcgf.2
spcgf.3
Assertion
Ref Expression
spcegf

Proof of Theorem spcegf
StepHypRef Expression
1 spcgf.2 . . 3
2 spcgf.1 . . 3
31, 2spcegft 2678 . 2
4 spcgf.3 . 2
53, 4mpg 1381 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103   wceq 1285  wnf 1390  wex 1422   wcel 1434  wnfc 2207 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604 This theorem is referenced by:  spcegv  2687  rspce  2697  euotd  4011
 Copyright terms: Public domain W3C validator