Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12-1 Unicode version

Theorem tz6.12-1 5232
 Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12-1
Distinct variable groups:   ,   ,

Proof of Theorem tz6.12-1
StepHypRef Expression
1 df-fv 4940 . 2
2 iota1 4911 . . 3
32biimpac 292 . 2
41, 3syl5eq 2126 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wceq 1285  weu 1942   class class class wbr 3793  cio 4895  cfv 4932 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-sn 3412  df-pr 3413  df-uni 3610  df-iota 4897  df-fv 4940 This theorem is referenced by:  tz6.12  5233  tz6.12c  5235  funbrfv  5244
 Copyright terms: Public domain W3C validator